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Abstract
Categorization and generalization are fundamentally related inference prob-
lems. Yet leading computational models of categorization (as exemplified by,
e.g., Nosofsky, 1986) and generalization (as exemplified by, e.g., Tenenbaum
& Griffiths, 2001) make qualitatively different predictions about how infer-
ence should change as a function of the number of items. Assuming all else is
equal, categorization models predict that increasing the number of items in a
category increases the chance of assigning a new item to that category; gen-
eralization models predict a decrease, or category tightening with additional
exemplars. This paper investigates this discrepancy, showing that people do
indeed perform qualitatively differently in categorization and generalization
tasks even when all superficial elements of the task are kept constant. Fur-
thermore, the effect of category frequency on generalization is moderated by
assumptions about how the items are sampled. We show that neither model
naturally accounts for the pattern of behavior across both categorization and
generalization tasks, and discuss theoretical extensions of these frameworks
to account for the importance of category frequency and sampling assump-
tions.
Keywords: Categorization, Generalization, Inference, Sampling assump-
tions, Cognitive modeling.
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Introduction

Categorization and generalization are two fundamental and deeply related inductive
problems. Categorization problems are characterized by people learning based on labeled
items from two or more categories and determining which out of a set of labels should be
applied to novel objects. Instead of two categories, generalization problems often focus
on learning a single category based on items from the category and asking the learner to
determine whether a novel object belongs in that category. The surface differences between
the two tasks appear to be almost negligible and in one sense are purely a matter of framing.
In a category learning task, where every object belongs to exactly one of two categories, it
is possible to reduce both problems to the same inductive problem in which the goal is to
determine whether the novel object belongs in one category or not.

Viewed from this perspective, one might expect categorization and generalization to
be essentially identical. Both require the learner to make inferences about the extensions of
categories, both predict people’s behavior on the basis of psychological theories about how
categories are represented, and both depend on the learner forming some representation
of the categories on the basis of a set of exemplars. Accordingly, one would expect that
theories of categorization and theories of generalization should agree with each other, at
least qualitatively, when describing the inferences people make. In this paper we investigate
a surprising and robust disagreement between these two different inference problems and
show how this difference is mirrored in existing theoretical accounts. Specifically, we show
that increasing the category frequency has qualitatively different effects on human inductive
inferences in categorization and generalization.

To illustrate why we might predict the effect of category frequency to differ across
tasks, we consider each task separately. In a Dax-or-Wug categorization problem, increas-
ing the number of Dax observations (holding other factors constant) pushes the category
boundary away from the observed Dax exemplars. Theoretical models of categorization
capture this frequency effect in a natural fashion. For example, the Generalized Context
Model (GCM; Nosofsky, 1986) is an exemplar model of categorization that computes a re-
sponse strength for the Dax category by summing the similarities between the novel object
and every previous Dax exemplar. Accordingly, adding more Dax observations without
adding any Wug exemplars will increase the strength of the Dax category, especially for
items similar to the Dax observations or whose category label is ambiguous. An item that
was previously equally likely to be classified as Dax or Wug will now appear more Dax-like
because additional Dax exemplars have been added. To put it another way, the GCM pre-
dicts a category frequency effect in which the point of subjective equivalence (where the
response strengths for the two categories are equal) is pushed from the Daxes and towards
the Wugs.

Now consider a generalization problem in which a learner is shown several Daxes
and asked to determine whether a novel item is also a Dax. What happens to people’s gen-
eralizations as we increase the number of Daxes? By analogy to the categorization problem
one might suppose that more examples of Daxes would encourage people to generalize more
broadly. However, formal models of generalization, such as the Bayesian approach taken by
Tenenbaum and Griffiths (2001), predict precisely the opposite. As the learner encounters
more Daxes they become more confident that the empirically observed variation in Daxes
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is entirely representative of the full range. When only a few Daxes have been seen, it is
quite plausible to believe that a novel object is also a Dax, even if it is somewhat dissimilar
to the previously encountered items. Observing one tiny Dax and one small Dax does not
rule out the possibility that Daxes can be large; but if the learner has seen 100 Daxes, all
small, the odds that Daxes can be large become much lower: if large Daxes were possible
one should have encountered them by now. As a consequence, the learner in this situation
shows very little generalization to new items that differ significantly in size.

Despite the apparent inconsistency, both the categorization and generalization liter-
atures have found substantial empirical justification for the divergent category frequency
effects each predicts. Although there is considerable variability in paradigms and in the
precise quantity being manipulated (e.g., frequency of a single item or of unique category
items), there appears to be a consistent pattern. Increasing frequency typically produces
tightening in generalization tasks across a variety of experimental frameworks and contexts
(Tenenbaum, 1999, 2000; Sanjana & Tenenbaum, 2003; Xu & Tenenbaum, 2007b, 2007a;
Frank & Tenenbaum, 2011; Lewis & Frank, 2016; Navarro & Perfors, 2010; Navarro, Dry, &
Lee, 2012; Vong, Hendrickson, Perfors, & Navarro, 2013; Hsu & Griffiths, 2016). However,
in categorization designs, the typical pattern of results suggests that increasing frequency
leads to wider generalization. This occurs when a single item within a category is repeated
in standard categorization designs (Nosofsky, 1991, 1988b; Harris, Murphy, & Rehder, 2008)
as well as typicality judgments (Vandierendonck, 1988; Williams & Durso, 1986), whereas
increasing the frequency of all categories leads to increased stability and generalization
(Homa, Cross, Cornell, Goldman, & Shwartz, 1973; Homa & Vosburgh, 1976; Breen &
Schvaneveldt, 1986; Homa, Burruel, & Field, 1987; Homa, Dunbar, & Nohre, 1991), and
the expansion of category membership predictions (Barsalou, 1985), category size estimates
(Beyth-Marom & Fischhoff, 1977), trait acceptance (Boseovski & Lee, 2006), and relative
similarity (Polk, Behensky, Gonzalez, & Smith, 2002).

This is somewhat surprising: the implication is that the same manipulation (increas-
ing sample size of the Dax category) causes the Dax category to expand when items from
two categories are shown and the task is framed as a Dax-or-Wug problem, but causes it
to tighten when items from one category are shown and the task is recast as Dax-or-not-
Dax. It becomes more surprising when one realizes – as we demonstrate later – that neither
model predicts this reversal. The original GCM predicts expansion in the categorization
task, and a basic adaptation of the GCM to a generalization task continues to predict ex-
pansion. Similarly, the Bayesian generalization model predicts narrowing in the original
problem and continues to do so when applied in a Dax-or-Wug style categorization task.

Given how puzzling the inconsistency appears, one might suppose that it could be
resolved by showing that one of the two phenomena is an experimental artifact. Perhaps
the difference can be attributed to different choices of stimuli, different choices of dependent
measure, or different kinds of presentation. For example, some generalization tasks (e.g.,
Navarro et al., 2012; Vong et al., 2013) do not show people specific stimuli on a trial by
trial basis, instead giving people a data visualization that graphically represents where the
stimuli fall (e.g. hormone levels marked as dots on a line). Many categorization studies were
not designed to investigate overall category frequency (e.g., Nosofsky, 1988b), and in most
cases there are other variables (e.g., specific exemplar frequencies, category variability)
that are varied at the same time. Accordingly, while the pattern in the literature does
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seem consistent, it is not easy to place the two kinds of experimental design on a common
footing, nor is it simple to find “pure” effects of category frequency in the existing studies.
Our goal in this paper is to present experiments that eliminate these differences and assess
categorization and generalization experiments using a common experimental paradigm. By
doing so, we hope to provide clear empirical evidence about whether people do in fact treat
these problems in different ways, and why.

The structure of our paper is as follows. We begin with a more careful discussion of
the theoretical issue, showing how the inconsistency between the two modeling approaches
arises because of a fundamental difference in how they conceptualize the inference prob-
lem and is not due to to superficial modeling choices like parameter settings. We then
present two experiments that show that the effect of sample size is indeed different in the
categorization task than in the generalization task, even when using common stimulus sets
and response measures. We argue that the difference arises because there is a genuine dif-
ference between the two problems: figuring out how to generalize from one category is a
qualitatively different kind of thing than figuring out how to assign an observation to one
of two categories. Finally, in a third experiment, we show that these frequency effects are
modulated by instructional manipulations that influence the prior beliefs about how items
are sampled, suggesting a common cognitive mechanism.

Before continuing, given that there is some ambiguity about the meaning of terms
like categorization and generalization, it is important to be precise about how we are using
the terms. Throughout the paper we use categorization to refer to the inference problem in
which items from more than one category are encountered during training, while general-
ization denotes the problem in which learners must make judgments when only seeing items
from one category. Though it has sometimes been conflated in the literature, we consider
the type of response people are asked to make to be orthogonal to the categorization-
generalization distinction. We use the term forced choice task whenever the dependent
measure is constructed from a forced choice decision (either Wug-or-Dax or Wug-or-Not-
Wug). Conversely, a probability judgment task refers to situations where the dependent
measure is a probability judgment of membership in a single category. Both response types
can be applied to categorization and generalization designs.1

Models of generalization and categorization

We begin by systematically evaluating two specific models of categorization and gen-
eralization. Do they genuinely produce these different effects, and if so why?

On the categorization side, we focus on the generalized context model (GCM) of
Nosofsky (1986). We choose this model because it is the archetypical model within the
categorization literature. It has been used to account for a wide range of phenomena

1It should be noted, of course, that number of categories (one or two) and response type (forced choice
or probability rating) are not the only ways in which relevant distinctions might be drawn with respect to
these tasks. For example Navarro and Kemp (2017) highlight the importance of allowing a “none of the
above” response option in forced choice tasks, regardless of the number of categories involved, and indeed
this is often a respect in which generalization tasks differ from categorization tasks (we discuss this later in
the paper). Our goal in defining the terms generalization and categorization is merely to avoid ambiguity
and state with precision what we are taking those terms to mean for the purposes of this paper. We do not
intend any general claim that this is the “correct” way to define these terms, merely that it seems sensible
for the current purposes.



CATEGORIZATION AND GENERALIZATION 5

in categorization including item and category frequency effects (Nosofsky, 1988b, 1991),
typicality (Nosofsky, 1988a) and distortion (Zaki & Nosofsky, 2007) in category inference,
and the reaction times of judgments (Nosofsky & Palmeri, 1997). It is also representative of
other categorization models in terms of the qualitative behavior in question. As we discuss
later, a large range of categorization models – including prototype and prototype-hybrid
models, decision-boundary models, knowledge-partitioning models, and Bayesian category-
learning models – match the prediction of the GCM that a learner should be more likely
to assign a novel exemplar to a category when there are more items in the category. For
simplicity, rather than analyze all of these models, we center our attention on the GCM.

On the generalization side we focus on the Bayesian generalization model of
Tenenbaum and Griffiths (2001). We choose this model because it was the first compu-
tational model in the generalization literature to propose a mechanism (the size principle)
to account for generalization gradient tightening. This effect has been observed in a number
of experimental contexts including concept learning (Tenenbaum, 2000, 1999; Sanjana &
Tenenbaum, 2003; Navarro & Perfors, 2010), language learning (Xu & Tenenbaum, 2007b,
2007a; Hsu & Griffiths, 2016; Lewis & Frank, 2016; Frank & Tenenbaum, 2011), and cate-
gory generalization (Navarro et al., 2012; Vong et al., 2013). As with the GCM and models
of categorization, rather than implement the variety of extensions and related models, we
choose for simplicity to focus on a single model.

There is another reason to discuss the GCM and the Bayesian generalization model
in particular: these models are theoretically related to each other. The shared common
core of both models is Shepard’s (1987) theory of generalization, and both models extend
this theory in different ways. Shepard’s analysis argues that the probability of generalizing
from a single observed entity decreases exponentially as a function of distance in an appro-
priately constructed psychological space. The GCM extends Shepard’s analysis by applying
an exponential generalization gradient to all exemplars, and using the summed generaliza-
tion strengths to guide categorization decisions. The Bayesian generalization model is also
related to Shepard’s model, retaining its central constructs but reformulating generaliza-
tion as a Bayesian inference problem. Like Shepard, it assumes that there exists some true
extension of the unknown category – the “consequential region” – and the learner’s goal
when generalizing from a set of exemplars is to estimate the probability that a novel item
falls within the consequential region of the psychological space.

In all three theories (Shepard, Nosofsky, Tenenbaum & Griffiths) there is a critical
link between inferring category memberships and making generalizations. However, while
the GCM and the Bayesian generalization model can both be viewed as extensions to
Shepard’s law of generalization, they are not equivalent. The GCM is primarily a model
of categorization that can be adapted to generalization problems, whereas Tenenbaum and
Griffiths provided a Bayesian model of generalization that is extensible to categorization.
At it turns out, this is the critical difference that produces the inconsistency.

GCM: An exemplar model for categorization

The central theoretical idea in the generalized context model is that the learner stores
copies of all observed exemplars and generalizes from them separately. Following the ap-
proach of Shepard (1987), the GCM assumes that stimuli are represented as points in a psy-
chological space and the similarity between stimuli decreases exponentially with distance.
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Suppose the learner has observed a set of N exemplars x = (x1, . . . , xN ) and category labels
l = (l1, . . . , lN ), where the label li for the i-th item belongs to a set of K possible category
labels. The learner then encounters a new item y and must decide which of the K categories
it belongs to. If we let d(x, y) denote the distance between two items in psychological space,
then the GCM uses Shepard’s exponential generalization gradient as a method to define the
similarity s(x, y), as follows:

s(x, y) = exp(−λd(x, y)). (1)

In this expression λ denotes the specificity parameter that describes the steepness
of the generalization gradient.2 The GCM uses this similarity function to determine the
response strength η(y, c) for a particular category c when the learner is presented with a
test item y. Following the core principle of exemplar models (Medin & Schaffer, 1978), the
GCM assumes that the learner separately assesses the similarity between the test item, and
these similarities combine additively. This gives rise to the following sum-similarity rule:

η(y, c) =
∑

xi|li=c

s(y, xi) (2)

where the sum is taken across all exemplars that belong to category c.3 Following Luce
(1963) the probability of assigning the test item y to category c is assumed to be proportional
to the response strength, giving:

P (ly = c) = η(y, c)∑
c′ η(y, c′) (3)

where the sum in the denominator is taken over all categories present in the task. Notwith-
standing the subtleties associated with different dependent measures,4 we take it that Equa-
tion 3 describes the GCM predictions: in a judgment task we assume that people directly
report the value of P (ly = c) plus some response noise, and in a forced choice task we
assume that P (ly = c) describes the probability of selecting category c. Neither assumption
is likely to be correct, of course, but for the purposes of our paper it suffices to note that
there is no reason to think this is important for the purposes of considering the effect of
sample size.

The GCMmakes a very clear prediction about the effect of relative category frequency
in categorization. As Figure 1 illustrates, increasing the size of one category relative to
another causes a category frequency effect: all else being equal, the fact that category A

2When items vary on multiple stimulus dimensions the GCM applies dimension weights to incorporate
differences in attention or feature salience, and applies an appropriate Minkowski metric (Euclidean distance
for integral dimensions, city block distance for separable ones) to compute distance. However, in all our
experiments stimuli vary only on a single dimension and distances can be computed without additional
parameterization.

3More precisely, the sum in Equation 2 should be taken across all distinct presentations of each stimulus,
so that if stimuli have different presentation frequencies they can be weighted differently. The distinction is
irrelevant for our studies as we ensure that all items have the same presentation frequency.

4For instance, in some applications of the GCM to forced choice tasks, a response scaling parameter γ is
added, in which case the response strength is given by η(y, c)γ . Response scaling has been the focus of some
discussion in the literature (e.g. Smith & Minda, 2002, 1998; Navarro, 2007; Myung, Pitt, & Navarro, 2007;
Nosofsky & Zaki, 2002), but for our current purposes it plays no meaningful role and can safely be omitted.
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Figure 1 . The effect of sample size on the GCM in a categorization task. The left side of
panel a shows how the response strength increases when the number of exemplars of a target
category (category A) is increased from 4 (white markers, dotted line) to 12 (black markers,
solid line). The number of exemplars of category B (gray markers) is held constant at 4,
and so the response strength (dashed line) remains unchanged. The effect on categorization
is shown in panel b: because the response strength for category A increases relative to
category B, the category boundary expands to the right.

has more exemplars than category B makes it more likely that the model assigns the label A
to any particular test item. The net effect is that the category boundary expands away from
the category A exemplars and towards the category B exemplars. Note that although the
specificity parameter λ can influence the shape of the curves, the qualitative prediction is
invariant to the value of λ. As long as the range of stimulus space spanned by the observed
exemplars is kept constant, the GCM will never predict an effect in the opposite direction.

Moreover, it should be noted that this prediction is not specific to the GCM or
exemplar models. Rather, it is grossly typical of categorization models generally. For
instance, prototype-hybrid models shift the prior beliefs of the category of new items to
match the empirical category frequency or create new prototypes within the more fre-
quent category (Anderson, 1990, 1991; Sanborn, Griffiths, & Navarro, 2010, 2006; Love,
Medin, & Gureckis, 2004). Decision-boundary models (Ashby & Gott, 1988; Ashby & Per-
rin, 1988; Ashby & Townsend, 1986; Ashby & Maddox, 1993) and knowledge partitioning
models (Lewandowsky & Kirsner, 2000; Lewandowsky, Kalish, & Griffiths, 2000; Yang &
Lewandowsky, 2004) either do not change with increased frequency, or shift their represen-
tations to increase the portion of the stimulus space that corresponds to the more frequent
category. Even a Bayesian category learning model based on rule-inference will increase
the complexity of the category rule with more items, leading to increased generalization for
new items (Goodman, Tenenbaum, Feldman, & Griffiths, 2008).
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Applying the GCM to a generalization problem

The GCM in the form described by Nosofsky (1986) is primarily a model for how
people choose which category to assign a novel item to. Thus, although it is related to
Shepard’s theory of generalization, it is not itself a model for generalizing a single category.
Nevertheless, it is not difficult to extend the GCM to make a prediction of this form,
and indeed this extension was proposed by Nosofsky (1991) not long after the GCM was
originally developed. The intent at the time was to adapt the GCM to serve as a model
of recognition memory. Recognition memory experiments have much the same structure
as a generalization task: people are shown items that belong to a single list (the target
category) and asked whether a test item was found on the study list. The two problems
are not perfectly equivalent in that the recognition memory task asks for an identification
decision rather than an inductive generalization, but there is mounting evidence (Nosofsky,
1991; Hawkins, Hayes, & Heit, 2016; Nosofsky, 2016; Nosofsky, Cox, Cao, & Shiffrin, 2014)
that the underlying processes between recognition memory and induction may be much the
same. With that in mind, we suggest that the Nosofsky (1991) model represents the natural
way to adapt the original GCM to a generalization problem.

The model works in the following way. If the learner has observed multiple stimuli
that all belong to the target category c, a response strength for that category η(y, c) is
computed using Equation 2 above, with no differences from the categorization context.
However, because the generalization problem does not provide a contrast category, the
generalization probability is computed by comparing η(y, c) to a threshold φ:

P (y ∈ c) = η(y, c)
η(y, c) + φ

(4)

On its face, this seems a sensible adaptation of the GCM. It retains all the core
theoretical constructs that the original GCM used to solve a categorization problem, and
the only novel entity is a threshold parameter that has proven successful in adapting GCM
in very closely related designs. What does it predict?

The behavior of the GCM in a generalization design is plotted in Figure 2, and
unsurprisingly the effect is closely analogous to the pattern shown in Figure 1. If we increase
the number of exemplars of the target category without changing the range they span, the
response strength rises (panel a). As a consequence, if the threshold parameter φ is held
constant, the overall effect is to push the generalization gradient (panel b) outwards, away
from the observed exemplars. That being said, a little care is required: it is not clear that one
should expect the threshold φ to remain constant as the number of exemplars in the target
category is increased. For example, in the context of manipulating set size in recognition
memory tasks, Nosofsky, Little, Donkin, and Fific (2011) proposed a variant of the GCM
in which the threshold scaled linearly with the number of items (i.e., φ is replaced with mφ
in Equation 4, where m is the number of training items). This version of the GCM makes
somewhat different predictions when applied to a single-category generalization task. As we
discuss later in the paper (see Figure 11) for many parameterizations this model predicts no
effect of category frequency rather than the modest expansion shown in Figure 2, however
the prediction depends on the interaction between multiple model parameters.

An important point to note at the outset is that there are almost certainly ways
in which variations of the GCM could produce cateogry tightening. For instance, one very
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Figure 2 . The effect of sample size on the GCM in a generalization task. The response
strengths for the target category are shown in panel a, and are identical to those depicted
for category A in Figure 1. However, because the generalization task does not present
exemplars from a contrast category, the response strength is compared against a fixed
threshold. The effect on generalization is shown in panel b: increasing the sample size
pushes the generalization gradient outwards, away from the observed exemplars.

sensible possibility would be to assume that the specificity parameter (λ in Equation 1) also
increases as a function of sample size, perhaps reflecting an adaptive generalization process
– when training items cover the stimulus space more densely, the learner is less reliant on
the need to generalize widely from any specific exemplar, and as such one might expect
λ to change systematically. Nevertheless, absent a substantive theory as to why λ might
change systematically with sample size in one design (generalization) and not in another
(categorization), it seems reasonable to leave this open to future work. As such, for the
purposes of this paper we take category expansion or no effect of category frequency to be
the “default” predictions of the GCM in a generalization design.

The Bayesian model for generalization

A different perspective on inductive generalization is suggested by the Bayesian model
of Tenenbaum and Griffiths (2001). Like the GCM, this approach can also be viewed as
an extension of the work of Shepard (1987) on stimulus generalization. Unlike the GCM,
it is a more direct extension. This framework assumes that a learner is given a set of
N items x = (x1, . . . , xN ) that all belong in the same category. The learner’s goal is to
infer whether that category generalizes to include a novel item y. The learner accomplishes
this by constructing a set of “consequential regions” of the psychological space, where each
possible region is a candidate hypothesis (h) for the consequential region that defines the
category (see Navarro, 2006; Soto, Gershman, & Niv, 2014; Griffiths & Austerweil, 2012,
for related approaches). The prior degree of belief P (h) for each such hypothesis is updated
to a posterior distribution via Bayes’ rule:
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P (h|x) = P (x|h)P (h)∑
h′∈H P (x|h′)P (h′) (5)

where P (x|h) describes the likelihood that the learner would have observed the items x if
h were indeed the true extension of the category. The generalization probability is then
constructed by summing the posterior probabilities of those hypotheses that contain the
novel item y:

P (y ∈ c) =
∑

h|y∈h

P (h|x) (6)

As Tenenbaum and Griffiths (2001) point out, this framing of the generalization problem
includes Shepard’s model as a special case, and has many connections with theories of
similarity. Inference in the Bayesian generalization model is driven by the likelihood function
P (x|h), which provides the mechanism for belief revision in the model. The model assumes
that items are sampled in a conditionally independent manner, which allows the probability
of several items x to be expressed as the product of their individual probabilities:

P (x|h) =
∏

i

P (xi|h) (7)

One of the major departures from Shepard’s original model lies in the way that this
likelihood function is constructed. Shepard argued that a typical generalization scenario
was one in which nature selects the item x independently of the consequential region h,
yielding what has been termed a “weak sampling” model (Tenenbaum, 1999). This weak
sampling model does not change the relative belief assigned to any hypothesis based on the
number of items that belong in the category. However, Shepard’s weak sampling model
is untenable in a situation when many items are all constrained to belong to the same
category. Given this, Tenenbaum and Griffiths (2001) make the simplest possible alteration
to Shepard’s assumption of independence: their “strong sampling” model assumes that
items are sampled such that they are constrained to belong to the relevant category but
are otherwise chosen uniformly at random. This slight change introduces a dependency in
the likelihood function on the structure of the hypothesis. Specifically, if the hypothesized
category has size |h|, then this means that the likelihood function becomes:

P (xi|h) =
{

1/|h| if xi ∈ h
0 otherwise (8)

In one sense the shift from weak sampling to strong sampling is trivial: it merely
incorporates a sensible constraint imposed by the fact that the generalization problem now
can incorporate multiple items from the same category. However, it entails a very non-trivial
consequence known as the size principle: as the sample size N increases, the probability
of small hypotheses will increase relative to larger hypotheses (Tenenbaum, 1999). To see
why this holds, consider the relative degree of belief that the learner has in two hypotheses
h1 and h2 after observing N items. Assuming that both hypotheses are consistent with all
the observations, then:
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P (h1|x)
P (h2|x) = P (h1)

P (h2) ×
N∏

i=1

P (xi|h1)
P (xi|h2)

= P (h1)
P (h2) ×

N∏
i=1

1/|h1|
1/|h2|

= P (h1)
P (h2) ×

( |h2|
|h1|

)N

(9)

Unlike a learner that assumes weak sampling and has no preference based on hypothesis size,
if the two hypotheses are different sizes, the learner who assumes strong sampling will come
to prefer the smaller one. Moreover, the extent of this preference grows exponentially larger
as the sample sizeN increases. The net result of increasing the sample size is that the learner
shifts belief from large hypotheses to small ones and the generalization gradient tightens.
This effect is depicted visually in Figure 3. The tightening of generalizations with increased
samples is a direct result of assuming strong sampling, a fundamental characteristic of
this model. While there are a number of ways in which the model could be adapted by
modifying the hypothesis space, the prior, or the sampling model, the “default” prediction
of the Bayesian generalization model is very different to the prediction we arrive at by
adapting the GCM to generalization problems.

Applying the Bayesian generalization model to categorization

Though originally conceptualized in terms of finding the consequential regions for a
single category, it is not too difficult to extend the Bayesian generalization model to two or
more categories, and there is at least some empirical evidence suggesting that the framework
can be fruitfully applied to multiple-category tasks (Vong et al., 2013).

How should we determine default predictions for the Bayesian generalization model
in a categorization task? As was the case with the GCM, there are multiple ways in which
the Bayesian generalization model can be adapted to a categorization problem. In our
view, the most transparent way to do this is to treat the generalization gradients from each
category as if they were “primitive” entities that drive the categorization decisions. That is,
the generalization probability for each category forms the response strength associated with
that category, and the choice probability is proportional to this response strength (Luce,
1959). Formally, if the positive examples for each category are modeled as an independent
Bayesian generalization process, the posterior estimates can be combined without regard to
the frequency of each category as in the decision rule for the GCM (Equation 3):

P (ly = c) = P (y ∈ c)∑
c′ P (y ∈ c′) (10)

where P (y ∈ c′) describes the generalization gradient inferred for category c′ using Equa-
tion 6. As the number of items in category c increases and the generalization gradient
P (y ∈ c) tightens, the category boundary will also tighten.

Nevertheless, this is not the only way to make this adaptation. For instance, one
might construct versions of the model that make different assumptions about the hypothesis
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Figure 3 . The effect of sample size on the Bayesian generalization model in a generalization
task. In the case of observing 4 exemplars drawn from a target category (top of panel a), it
is plausible to think that the true extension of the category might be much broader than the
range spanned by those items. Illustrating this idea, the middle of panel a shows the relative
degree belief in four hypotheses (horizontal lines), where the width of each line reflects the
amount of belief in that hypothesis. By averaging over their beliefs about the hypothesis
(bottom of panel a) the learner obtains a broad generalization gradient. In the case of
12 exemplars that span the same consequential region (as in panel b) this evidence very
strongly favors smaller hypotheses, producing more belief in smaller hypotheses and thus
narrower generalization gradients. Panel c show the generalizations made by a Bayesian
learner who considers all possible intervals defined over a finite range for the 4 and 12
exemplar cases (see Navarro, et. al., 2012, for analytic expressions).

space or sampling assumption. For the purposes of this paper, however, we wish to hold
these assumptions constant to the greatest possible extent, in order to determine what the
Bayesian generalization model would predict about categorization tasks, if there were no
“deep” differences between the tasks. A (somewhat) principled way to do this is as follows.
Exemplars are sampled such that a category label is selected at random (with some unknown
probability associated with each label), and then an exemplar from that category is selected
uniformly at random, which is necessary to preserve the strong sampling assumption of
the model. The hypothesis space for this model assumes that the consequential regions
associated with each category are independent – an exemplar can belong to one or both
of the categories, or neither. This permits the category representations to be separate
from the nature of the response task, allowing ratings of a single category probability in
probability response tasks, binary classification in forced choice tasks, or ‘none of
the above’ category responses when permitted (Navarro & Kemp, 2017). As shown in the
Appendix, this yields an alternative form for Equation 10:

P (ly = c) = P (c)P (y ∈ c)∑
c′ P (c′)P (y ∈ c′) (11)
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Figure 4 . The effect of sample size on the Bayesian generalization model in a categorization
task. Panel a shows the “primitive” generalization curves that result from the learning about
the extension of each category by applying the strong sampling model to each category
independently. Even when combined with a mechanism for learning the different frequencies
of the two categories (Equation 11), the overall result produces a shift in the category
boundary closer to category A when the sample size is increased (panel b).

where the inferred prior probability P (c) for category c is related to the number of times
the category has been observed.

The predictions about sample size that emerge from Equation 11 are somewhat less
obvious than Equation 10 because there are two different mechanisms involved: as described
before, the generalization gradients P (y ∈ c) tighten exponentially as the category frequency
increases, causing the category boundaries to contract towards the category. However, this
effect is somewhat offset by the fact that the prior probability of the label P (c) increases
linearly with frequency, causing boundaries to expand away from the category. Nevertheless,
as Figure 4 shows, the exponential tightening dominates the linear expansion and the overall
effect of increasing category frequency in Equation 11 results in tightening for the category
boundary. Thus, mirroring what we observed with the GCM, when we extend the Bayesian
model of generalization to a categorization problem – while holding the sampling assumption
and hypothesis space associated with the categories unchanged – we arrive at a model that
makes the opposite “default” prediction about sample size to the one made by the GCM.

How should we interpret the discrepancy?

The inconsistency between these models is striking enough on its own, but becomes
even more surprising when one recognizes that the GCM is known to make good pre-
dictions about how frequency information is used in categorization (e.g., Nosofsky, 1991,
1988b), and that the Bayesian strong sampling model makes accurate predictions in in-
ductive generalization tasks (e.g., Navarro et al., 2012; Xu & Tenenbaum, 2007b). Each
model correctly captures the empirical pattern in its own domain, yet when the central
principles of both models are extended to the other domain – without making any special
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claims that something is different about generalization and categorization – they make the
opposite prediction to each other. If this is true, it suggests that generalization decreases as
experience of a category increases, but the probability of assigning items to that category
increases with more observations. This is, to put it mildly, puzzling.

Why does this inconsistency occur? One somewhat dispiriting possibility is that
the empirical evidence for one (or both) of the effects is simply wrong. Alternatively, it
is possible that both effects are real but are dependent on superficial properties of the
task. One especially plausible possibility is that the source of the difference lies in the
choice of dependent measure. Most categorization experiments use a forced-choice response
while nearly all generalization experiments ask people to rate the probability of category
membership. Though it is not obvious why this should drive different changes due to sample
size, it is nevertheless a major difference between experiments that produce an expansion in
categorization (as exemplified by, e.g., Nosofsky, 1988b) and those that produce tightening
effects in generalization (as exemplified by, e.g., Navarro et al., 2012).

A more interesting possibility is the suggestion that there are systematic differences
between the inductive problems posed by categorization and generalization tasks, and those
explain the divergent patterns of results. Perhaps the mere fact that a generalization exper-
iment presents people with positive examples of a target category whereas a categorization
experiment displays examples of multiple categories is genuinely sufficient to produce a
qualitative reversal in people’s inductive inferences. Our discussion of the GCM and the
Bayesian generalization model hints that this might be true, simply by virtue of the fact
that Figures 1 and 3 both look like “sensible” models, but something seems to have gone
awry with the model construction in both Figures 2 and 4. The “minimalist” adaptations
that we have made to the GCM and the Bayesian generalization model both feel somewhat
wrong for the problem they are ostensibly solving.

These considerations suggest that a head-to-head comparison between a categoriza-
tion task and a generalization task is required, taking care to keep everything else constant.
In the experiments below, participants learned categories with different numbers of observa-
tions (either four or twelve, as in the simulations above). The measure of interest is whether
their judgments expanded or tightened with the additional observations. Thus, Experiment
1 investigated inference when shown two categories, while Experiment 2 explored inference
for one category. Within each experiment, we manipulated the task, asking separate par-
ticipants either a forced-choice question about which category a novel item belongs to or a
probability judgment question about how likely the novel item is to belong to the category.
All other factors (e.g., nature of the stimuli, cover story, etc) were kept constant.

Our results indicate that the sole important factor is the number of categories. In
Experiment 1, where there are two categories, people’s judgments expand regardless of the
question they were asked. This behavior is predicted by the GCM but not the Bayesian
generalization model. Conversely, in Experiment 2, with one category, people’s judgments
tighten regardless of the question asked. This behavior is predicted by the Bayesian gen-
eralization model but not the GCM. In Experiment 3 we explore the possibility that these
changes are caused by learners making different assumptions about the sampling process
in the one- and two-category tasks. The effect of category expansion in the two-category
task is replicated; however, a cover story manipulation of sampling assumptions is sufficient
to eliminate this category expansion effect. We conclude with a discussion of what these
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results indicate about how categorization and generalization differ, and why the one-to-two-
category shift should matter.

Experiment 1: Categorizing objects into two categories

Method

Participants. We recruited 500 participants on Amazon Mechanical Turk and col-
lected data from 499 participants (the data from one participant was not saved). Of the
499 total participants, 23 were excluded because they had previously participated in similar
online experiments run by our lab. An additional 94 were excluded for failing to meet a pre-
defined accuracy threshold for non-critical test stimuli, described below. The remaining 382
participants were included in all analyses. Participants ranged in age from 18 to 79 (mean
32.6) with 43.5% being female. 72.0% of participants came from the USA, 23.6% from
India, and all other countries less than 1%. People were paid $0.50 for their participation
in the 8-minute experiment.

Design. Participants were randomly assigned to one of four conditions in a 2x2
between-subjects design. The first factor varied the number of exemplars from Category
A that the participants were shown, either four (N=209) or twelve (N=173). Category
B consisted of four exemplars regardless of condition. The second factor manipulated the
response elicitation method: people were either asked to provide forced choice decisions
in which they had to assign a novel item to Category A or Category B (N=228), or they
were asked to rate the probability that the novel item belonged to Category A (N=154).

Stimuli. Stimuli consisted of an outer rectangle that was 185 pixels wide and 110
pixels tall, with a vertical black line drawn on the interior of the rectangle. To assist people
in making perceptual discriminations four evenly-spaced light gray vertical and horizontal
grid lines were included within each rectangle. Example stimuli are shown in Figure 5.

Categories were defined in terms of the values along only one dimension, but the
nature of the dimension was randomly varied between participants: for some, the black
lines varied by position, and for others, they varied by height. Stimuli were also left-right
reversed for a random half of the participants. All analyses collapse across both of these
factors, as none of them materially affected the conclusions.

Each stimulus varied along the one relevant stimulus dimension; we refer to this as the
value of the stimulus. The value for line height varied from 5% to 95% of the height of the
rectangle, and the value for line position varied from 5% to 95% of the width of the rectangle
from the left edge. For clarity of exposition, we describe the rest of the experiment in terms
of the condition in which the dimension varies by position and Category B values are encoded
with higher numbers, even though both of these factors were completely randomized in the
actual experiment.

Stimulus values were defined to match the values in the simulations in Figures 1 and 3.
Category B, which was identical for all participants, contained four stimuli (as in the fourth
row of Figure 5) with values of 73%, 77%, 85%, and 87%. For all participants, the range of
values in Category A were identical, spanning from 21% to 43%. Participants in the twelve
condition observed all of the odd-numbered stimulus values within that range in addition
to these endpoints, resulting in twelve exemplars total. Those in the four condition saw
an additional two values randomly selected from between the endpoints, making four total.
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Figure 5 . Sample stimulus display used in the two-category task (Experiment 1). The
twelve training stimuli from Category A (labeled Wuggams) are in the top three rows, with
the four stimuli from Category B in the fourth row. The single test exemplar from this trial
is shown at the bottom of the figure along with two response buttons. The probability
condition looked identical except that instead of two buttons at the bottom people saw a
slider with values ranging from 0% to 100% and a submit button.

Procedure. Participants were told that they were going to be shown a few example
objects from two categories and then asked to make judgments about new objects while the
examples remain on the screen. Participants making probability response judgments were
instructed to “indicate how likely you think it is that this object belongs in the specified
category.” Participants making forced choice responses were instructed to “indicate
which category you think this object belongs in.” Both conditions were required to answer
a series of three check questions designed to make sure they understood the instructions and
then proceed to a training and test session. Those that did not answer all of the questions
right were returned to the instructions until they did.

Training. Training for Category A and B was simple and identical across all four
conditions. In it, people saw exemplars from two categories defined according to a one-
dimensional feature as described above. All of the stimuli appeared immediately, some as
exemplars of Category A and some as exemplars of Category B, as in Figure 5. The stimuli
in each category were arranged in a random order and each person saw a different assignment
of two labels (Blicket and Wuggam) to the two categories. During the instructions people
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were told to “When you start the task you will be shown a few example objects from each
category. Please take the time to study these examples and then press the Next button.”

Testing. In order to minimize effects of memory, all training stimuli stayed on the
screen for the duration of the test phase, which was very similar regardless of what question
condition people were in. In all conditions, the set of test stimuli consisted of 19 exemplars
that spanned the whole range of the stimulus dimension from 5% to 95% in steps of 5%.5
The test stimuli were shown one at a time and in a random order. The next stimulus was
shown directly after participants submitted their response by pressing a button.

What question people were asked during test varied by question condition. Those
in the forced choice condition were asked “Which category do you think this example
belongs in?” and were then presented with two response buttons, one for each category.
Those in the probability condition were asked “How likely is it that this example is in
the [Blicket/Wuggam] category?” and were then shown 21 radio buttons with labels going
from 0% to 100% in steps of 5%. People in the probability condition were always asked
about the Category A label, as is typical in generalization experiments. In order to allow
scope for capturing graded responding in the forced choice condition, each test stimulus
was presented once in the probability condition and four times in the forced choice
condition. The conditions took similar amounts of time to complete.

Results

As mentioned above, 94 of the initial 499 people are excluded from the analysis for
failure to achieve an accuracy threshold at test. This threshold was defined before analyzing
any data and captured the intuition that if they understood the task and were trying, they
should classify any stimulus with values between 21% and 43% as Category A (since that
is the range of actually observed stimuli). One would expect that any stimuli with these
values would be classified as A nearly 100% of the time, but in order to be as conservative
as possible we set a threshold of 80%: those who classified the within-A items as not-A at
least 20% of the time are excluded from the analysis (setting the threshold slightly higher
or lower does not materially affect the results).

The left column of Figure 6 shows participant responses during the test phase for all
stimulus values, with the top row showing performance in the forced choice condition
and the bottom row showing performance in the probability condition. The overall pat-
tern is consistent across conditions, with people more likely to correctly indicate that lower
stimulus values are consistent with Category A and higher values are consistent with Cate-
gory B. That said, the question of whether their responses are expanding or tightening with
additional exemplars is only answerable upon examination of the critical stimulus values
between the categories, shown in the right column of Figure 6. In both cases, especially
in the forced choice condition, there is a slight expansion away from Category A with
additional training stimuli. Is this a statistically robust result?

To answer this question we compute a set of Bayes Factors that compare the relative
posterior odds of three linear models. In the Value Only model, category A responses are
predicted based on the stimulus value only. In the Value + Number model, predictions

5Due to a coding error, one of the extreme stimuli (either 5% or 95%) was not shown to 151 participants.
Neither of these stimuli were within the critical region that we focus our analysis on.
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Figure 6 . Human performance in the two-category experiment (Experiment 1). The top row shows
the forced choice condition: the proportion of answers selecting Category A in response to the
question “Which category do you think this example belongs in?” for each possible stimulus value
at test. The bottom row shows the probability condition: the overall probability that the test
item was rated as being in Category A. The graphs on the left show responses over the entire range
of stimulus values; the right panels show responses for the critical range between the two categories.
Points along the grey line indicate responses after seeing four exemplars; the black points indicate
responses after twelve. Participants who saw more observations in Category A expanded their
responses away from Category A, especially in the forced choice condition. This is consistent
with the predictions of the GCM but not the Bayesian model of generalization.

are based on both stimulus value and the number of category A exemplars that participants
observed. Lastly, the Interaction model extends the Value + Number model with a
term that models an interaction between the two predictors.6 The data evaluated within
these models consists of the critical stimulus values (45% to 70%, right column in Figure 6),
with the two question conditions (probability and forced choice) analyzed separately.

We first consider performance in the forced choice condition. Logically speaking,
we are interested in evaluating the impact of three different factors on whether people define

6We also ran a model containing only a random intercept for each individual. The Value Only model was
strongly preferred over the intercept only model (BF > 10265 : 1) so we abandon any further comparisons
involving the random-intercept-only model. All of the models also contain a random intercept for each
individual. They were fit using the default parameters (Rouder, Morey, Speckman, & Province, 2012; Liang,
Paulo, Molina, Clyde, & Berger, 2008) from the BayesFactor package (version 0.9.12-2) in R (version 3.3.1).
The two predictor variables, stimulus value and the number of training examples, were coded as categorical
variables.



CATEGORIZATION AND GENERALIZATION 19

Condition Best Model Model Performance

Value Only Value + Number Interaction

Forced Choice Value + Number 1 : 1 7.6 : 1 6.2 : 1
Probability Value 1 : 1 0.17 : 1 0.013 : 1

Table 1
Comparison of how well three different regression models capture human performance in
the two conditions in Experiment 1. All models are linear regression models with a random
intercept for each individual. We consider three nested models: predictions based on stimulus
value only, stimulus value and the number of observations, and one with both predictors as
well as an interaction term. In the forced choice condition, the preferred model is the one
with both stimulus value and number of observations as predictors. This suggests that, in
keeping with the GCM, people were more likely to classify an item as a member of Category A
if there were more observations in Category A. In the probability condition, the preferred
model did not contain the number of observations. This suggests that probability judgments
do not expand with category size in the same way (although the trend was still in that
direction, rather than towards tightening).

a stimulus with a given value as a member of Category A or not. As a sanity check, we
should expect that stimulus value should have an impact on these judgments; people
should be more likely to classify a stimulus located at 45% as Category A rather than one
at 70%. The main variable of interest is whether the number of observations in Category A
also plays a role in determining how people categorize the stimulus. We are also interested
in whether there is an interaction between these two variables.

Table 1 shows the Bayes Factors (BFs) for each of those three models, with the model
including only stimulus value as the baseline. Thus, the ratio reported for each model in the
table reflects the BF for that model compared to the model containing only stimulus value
as the predictor. For the forced-choice judgments, it is evident from the table that the most
preferred model is the one that contains both stimulus value and the number of observations
as predictors. This is evidence that people did in fact change their categorization probability
when Category A had more observations in it. We can estimate how much this changed by
examining the posterior estimates of the parameter values from the preferred model. They
suggest that the eight extra training examples lead to a 7.4% increase in the probability of
selecting Category A (95% CI: 2.5% to 12.5%) for test items between the two categories.
This expansion in choice probability is consistent with the predictions of the GCM and not
the Bayesian model.

The pattern of responses for participants in the probability condition also shows
a qualitative category expansion trend, but no evidence of a difference due to category
frequency. As Table 1 shows, performing the same model comparison as before ends up
favoring the model whose only predictor is stimulus value. In other words, the number of
observations did not have a significant effect on people’s answers to the probability judgment
question. That said, the trend is also in the direction of category expansion and not category
tightening. This matches the posterior estimates of the parameter values from the model
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that includes number of observations which show that the eight extra training examples
lead to a 2.0% increase in probability judgment (95%CI: -3.3% to 7.2%).

Discussion

The results from Experiment 1 are ambiguous in one sense, but very clear in another.
It is not entirely clear whether an expansion effect was observed for both the forced
choice and probability judgment tasks: taken at face value the results suggest an effect
exists when people are asked to make force choice decisions, but disappears when asked to
give probability judgments. However, it is clear that there is no evidence for the category
tightening effect predicted by the Bayesian model and shown in Figure 4. The results are
far more compatible with the GCM predictions shown in Figure 1.

Experiment 2: Generalizations about one target category

The superior performance of the GCM on a categorization task raises the possibility
that it might also outperform the Bayesian approach on a generalization problem. Perhaps
previous papers that found a tightening effect in generalization were false positives, or
perhaps differences in experimental procedure can account for the difference in results. With
this in mind, we conducted a second experiment in which people were shown examples from
one category and asked to make generalizations about new items, but in every other respect
the procedure was the same as in Experiment 1.

Method

Participants. We recruited 500 participants on Amazon Mechanical Turk and col-
lected data from 454 participants before the job posting expired. 45 participants were
excluded because they participated in similar experiments. An additional 109 participants
were excluded from all analyses because they failed the accuracy threshold at test (described
in the previous experiment). The remaining 300 participants were included in all analyses.
The participants ranged in age from 18 to 69 (mean 35.0) and 38.3% were female. 62.7% of
participants came from the USA, 32.3% from India, and all other countries less than 1%.
People were paid $0.50 for their participation in the eight-minute experiment.

Design. All details of the study, including the procedure and stimuli, were identical
to the previous study. The only difference is that the stimuli were all from one category,
which led to two minor differences in the text used to describe the situation. The training
examples were now preceded by “These are examples from the category.” The test question
was slightly different as well: in the forced choice condition, instead of asking “Which
category do you think this example belongs in?” people were asked “Do you think this
example is in the category?”, while in the probability condition they were asked “How
likely is it that this example is in the category?” Participants were randomly assigned to the
conditions with four (N=125) or twelve (N=175) stimuli and were given either forced
choice response options (N=164) or a probability judgment response (N=136).

Results

The left column of Figure 7 shows participant responses during the test phase for all
stimulus values, with the top row showing performance in the forced choice condition and
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Figure 7 . Human performance in the one-category experiment (Experiment 2). The top row shows
the forced choice condition: the proportion of answers selecting Category A in response to the
question “Do you think this example is in the category?” for each possible stimulus value at test.
The bottom row shows the probability condition: the overall probability that the test item was
rated as being in Category A. The graphs on the left show responses over the entire range of stimulus
values; the ones on the right show responses in the critical range between the two categories from
Experiment 1. Points along the gray line indicate responses after seeing four exemplars; the black
points indicate responses after twelve. Participants who saw more observations in Category A
tightened their responses for Category A. This is consistent with the predictions of the Bayesian
model of generalization but not the GCM.

the bottom row showing performance in the probability condition. Unlike in the previous
experiment, the overall pattern for both response types shows a decrease in probability of
assigning test stimuli to category A when more training examples are added.

We quantify these effects by comparing the same set of linear models as in Experiment
1, with responses in the forced choice and probability conditions analyzed separately.
Table 2 shows the Bayes Factors for each of those three models; the model including only
stimulus value serves as the baseline. It is evident from the table that the most preferred
model in both the probability and forced choice conditions is the one that contains
both stimulus value and the number of observations as predictors. This is evidence that
people did in fact change their categorization probability when the category had more
observations in it.

Examining the posterior estimates of the parameter values from the preferred model
suggests that the eight extra training examples lead to a 13.3% decrease in the probability
of including the stimulus in the category (95% CI: 4.2% to 22.7%) in the forced choice
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Condition Best Model Model Performance

Value Value + Number Interaction

Forced Choice Value + Number 1 : 1 12.9 : 1 1.5 : 1
Probability Value + Number 1 : 1 14.0 : 1 10.3 : 1

Table 2
Comparison of how well three different regression models capture human performance in
the two conditions in Experiment 2. In both the forced choice and probability condi-
tions, the preferred model contains both the stimulus value and number of observations as
predictors. This suggests that, in keeping with the Bayesian model, people were less likely
to classify an item as a member of the category if the category had more observations. See
Table 1 for model details.

condition and a decrease of 12.4% (95% CI is 3.9% to 21.0%) in the probability condition.
By contrast with the previous experiment, this tightening is consistent with the predictions
of the Bayesian model rather than the GCM.

Discussion

The results in Experiment 2 are unambiguous. Regardless of whether people were
asked to make forced choice decisions or to give probability judgments, increasing the sample
size produced a tightening of the generalization gradients. As in Experiment 1, the estimated
effect of the forced choice judgments appear to be more sensitive to the number of examples
than the probability judgments. These results are consistent with Tenenbaum and Griffiths’s
(2001) Bayesian analysis and inconsistent with the predictions from the GCM. Although
the GCM provided the better account of the categorization problem in Experiment 1, the
Bayesian model provided a much better account of the generalization problem in Experiment
2. This occurred even though the two tasks employed the same stimuli, the same instruction
set, the same recruitment procedure, and the same response elicitation methods.

Experiments 1 and 2 examine the effect of increasing sample size on both generaliza-
tion and categorization tasks. Though the two tasks are conceptually closely related, the
results indicate a clear difference. Experiment 2 showed that additional exemplars caused
people to tighten their inductive generalization when learning about a single category. In
contrast, Experiment 1 showed that such tightening was not evident in people’s categoriza-
tion decisions, and indeed the reverse effect was observed in the Forced Choice condition.
If generalization and categorization are indeed closely related, then what might reasonably
account for the differences observed?

The difference between the Bayesian model of generalization and Shepard’s original
model offers a possible explanation for these seemingly contradictory effects of increased
sample size, in the form of the sampling assumption made by the learner. When items from
only a single category are seen, as in generalization experiments, a learner might be justified
in assuming that the experiment is designed so that the only items that can be shown are
those that belong to the category. This is equivalent to the strong sampling assumption from
Tenenbaum and Griffiths (2001), and predicts that the learner should produce generalization
curves that tighten as sample size increases, as observed in Experiment 2 when items from
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Figure 8 . Predictions from the Bayesian Generalization Model when assuming weak sam-
pling (Equation 12). Left: Predicted generalization gradients where the 4-item and 12-item
Category A curves exactly overlap (shown in black and dashed gray lines). Center: Cate-
gory A generalization gradients using a decision rule without category frequency information
(Equation 10). Increasing Category A frequency does not change the curve. Right: Cate-
gory A generalization gradients using a decision rule that incorporates category frequency
information (Equation 11). Increasing Category A frequency leads to category expansion.

only one category are present.
In a categorization task, where items from more than a single category are present, it

is less clear how the learner should assume items are sampled. One conservative possibility
would be to assume that items are sampled in proportion to their base rate in the popu-
lation, independent of the category label. This experimental design is not unusual in the
categorization literature – most often in the form of block randomized designs with equal
base rates (e.g. Nosofsky, Gluck, Palmeri, McKinley, & Glauthier, 1994; Lee & Navarro,
2002; Kruschke, 1993; Goldstone, 1994) – and as such would not be unreasonable for a
learner to assume in this task. From a Bayesian perspective, this sampling process is con-
sistent with the weak sampling model (Shepard, 1987) where Equation 8 is replaced with a
likelihood function that is independent of the size of the hypothesis:

P (xi|h) ∝
{

1 if xi ∈ h
0 otherwise (12)

Under this account, the prediction about how generalization curves change depends on
how category frequency information is integrated into the decision process (see Figure 8). If
frequency information is not incorporated into the decision rule then generalization curves
do not change at all as sample size increases (as in Equation 10). If the decision rule
includes priors based on category frequency (as in Equation 11), then generalization curves
are predicted to expand as the relative frequency of the more frequent category increases.

Thus, the contrasting results found in Experiments 1 and 2 may be explained by a
shift in sampling assumptions based on the number of categories presented. One way to
test this account is by manipulating the beliefs learners have about why the frequency of
the two categories are not equal. If participants are dynamically adjusting their sampling
assumptions based on the category structure, then it should be expected that they can
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adjust the degree to which category frequency influences generalization. Experiment 3 tests
this hypothesis using an extension of the two category design from Experiment 1.

Experiment 3: Manipulating sampling assumptions

This experiment replicates the Four exemplar condition of Experiment 1 as well as
two variants of the original Twelve exemplar condition. In these two new conditions the
set of training items is identical but the cover story for how items are sampled differs. The
Twelve Random condition is designed to induce a weak sampling assumption by explain-
ing that items are selected at random, independently from category membership. In con-
trast, the Twelve Helpful condition is designed to induce a strong sampling assumption
by encouraging the belief that items are chosen from a specific category by a helpful teacher.
Experimentally manipulating sampling assumptions has been applied fruitfully in a num-
ber of inductive generalization tasks including word learning (Xu & Tenenbaum, 2007a),
property induction tasks (Ransom, Perfors, & Navarro, 2016; Hayes, Navarro, Stephens,
Ransom, & Dilevski, 2019) and single category generalization tasks (Ransom, Hendrickson,
Perfors, & Navarro, 2018; Ransom & Perfors, submitted). The consistent finding in these
studies is that experimentally manipulating the sampling assumption does have an effect on
generalization. The question we consider in Experiment 3, then, is whether an analogous
effect can be produced in a categorization task.

To our knowledge the only previous attempt to investigate this question in a multiple-
category design is a study by Vong et al. (2013) who found some evidence that sampling
assumptions can shape generalization from multiple categories. In this experiment we depart
from that work in several ways. First, we use a more “traditional” learning task with
stimuli explicitly displayed to participants, whereas Vong et al. (2013) presented stimuli
schematically as a distribution of points along a single dimension, as in Navarro et al.
(2012). Second, the sample size manipulation in Vong et al. (2013) increased the number
of items in both categories rather than one of two as in our Experiment 2. Third, in their
two-category study participants were only queried about “category A”, a framing which
could plausibly have caused people to focus more on one category, rather than asking the
more neutral classification question (i.e., “A or B”) used in the previous experiments. With
these considerations in mind, our Experiment 3 revisits this question, using a procedure
similar to Experiments 1 and 2.

Our goal in this experiment is to provide people with a plausible explanation as
to why they are seeing more examples of one category than another in the two twelve
exemplar conditions. By purporting to select items at random, the Twelve Random
condition is designed to promote the belief that the different sample sizes are reflective of
the true category base rates. By contrast, in the Twelve Helpful condition people are
led to believe that the number of exemplars provided is simply a constraint imposed on the
selections made by the helpful teacher and therefore not reflective of the true base rates.

By comparing performance across these three conditions, we are able examine the
effect of additional exemplars on generalization and to test whether the nature of the effect
changes depending on the learner’s assumptions. In making such comparisons, there are
three different patterns of results that we might reasonably expect, as illustrated in Figure 9.
If a two category categorization task, by its nature, induces a weak sampling assumption
(regardless of our cover story), we predict the following two effects. First, people who
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Figure 9 . Three possible patterns of results in Experiment 3. The left panel is produced
by assuming weak sampling and no frequency information in the decision rule. The middle
panel is produced by a model that assumes weak sampling but includes frequency informa-
tion when making a decision. The right panel is produced by a model that assumes strong
sampling which inherently includes frequency information.

observe twelve randomly sampled category A exemplars should attribute the difference in
sampling frequency to a genuine difference in category base rates. As a consequence, these
people should widen their generalizations away from category A when compared with people
who see only four category A exemplars (middle panel). Second, people who believe that the
eight additional exemplars were sampled from the category should show no change in their
generalizations toward category A relative to people in the Four condition (left panel). If,
however, the Twelve Helpful sampling cover story is sufficient to lead people to believe
that each item was strongly sampled from its respective category, then their generalizations
should tighten toward category A relative to people who only saw four category A exemplars
(right panel).

Method

Participants. We recruited 364 participants for this experiment via Amazon Me-
chanical Turk. Of these, 20 people were excluded from participation, having taken part
in either of the previous experiments. No results were collected from 31 people who failed
to complete the experiment. A further 15 people were excluded from further analysis for
failing to reach the predefined accuracy threshold used in Experiment 1. Data from the
remaining 298 participants were included in all subsequent analyses. Participants ranged
in age from 18 to 68 (median age: 32), 39% were female, and 98% of participants were from
the USA. Participants were paid $USD 1.25 for taking part in the 7 minute experiment.

Design. People were allocated at random to one of three conditions. People in
the Four condition (N = 96) were shown four exemplars from category B and four from
category A, with no explanation offered for how these examples were chosen. Likewise,
participants in the Twelve Helpful condition (N = 99) saw four exemplars from each
category for which no explanation was offered. However, in addition they saw a further eight
exemplars from category A which, they were told, had been selected from the category by
a helpful teacher. In the Twelve Random condition (N = 103), people were told that 16
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examples had been chosen for them at random. The “random” selection always consisted
of the four category B exemplars, and twelve exemplars from category A.

Stimuli. The overall design of the study was based on Experiment 1. The stimuli
were identical in appearance to those in the previous study (albeit that the images were
allowed to scale to fit within the user’s browser window in a manner that preserved the
original aspect ratio). However, we restricted the presentation of the stimuli so that the
black line within the stimuli varied only by position, with category A exemplars always
represented by a line toward the left (the details of how the black line varied having made
no material difference in the previous study). The same stimulus values were also used,
as well as the same method of determining the subset of category A exemplars seen by
participants in the Four condition.

Procedure. The experiment followed the same basic procedure as Experiment 1,
the main difference being the initial explanation of the experiment given prior to the training
phase. Participants in all conditions were told that the purpose of the experiment was to see
how well they could judge between two categories of similar looking objects. Participants
were then informed how examples would be selected. This explanation differed across the
three conditions. People in the Four condition were told simply:

We’ll start by showing a few examples of each category, taken from our cata-
logues.

at which point the four category B and four category A exemplars were displayed on-
screen. Participants in the Twelve Helpful condition were given this same introduction.
However, after the initial exemplars were displayed, they were informed:

The computer has assigned you to experiment group «K8», so we’re
going to help you by showing you an additional «8» «Wuggams» chosen by a
helpful teacher from our Wuggam catalogue.

People in the Twelve Random condition were told the following:

The computer has assigned you to experiment group «J16», so we’ll
start by selecting «16» objects at random from our catalogue. We’ll classify
the objects on-screen for you so that you have some examples to work with.

All subsequent instructions were identical across conditions.
As with Experiment 1 & 2, the training stimuli remained on-screen during the testing

phase, and were annotated with a reminder of how the stimuli were chosen. Based on
the assumption that forced choice decisions are more sensitive to changes than probability
judgments, the response measure was limited to Forced Choice in all three conditions.
Otherwise, the conduct of the test phase followed the procedure adopted in Experiment 1.

Results

The overall pattern of responses is consistent across all conditions, with people more
likely to indicate that lower stimulus values were in category A, while higher values were
in category B (Figure 10). Importantly, the pattern of responses is broadly consistent with
that of Experiment 1 (Figure 6).
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Figure 10 . Human performance in the two category experiment with sampling assumption
manipulation (Experiment 3). The graphs show the proportion of responses selecting cat-
egory A in response to the question: “Which category do you think this example belongs
in?” for each possible stimulus value at test. The graphs on the left show responses over
the entire range of stimulus values; those on the right show responses for stimuli in the
range between the two categories. Each row contrasts the performance of people who saw
four category A exemplars (shown in gray) with one of the groups that saw twelve (shown
in black): Twelve Random in the top row, and Twelve Helpful in the bottom row.
The effect of additional exemplars differs depending on condition. People who are told that
all exemplars are selected at random from a collection of objects are more likely to assign
items to category A. In contrast, those who are told that an additional eight exemplars had
been chosen by a helpful teacher, exhibited near identical responses to people who see only
four exemplars.
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The Twelve Random and Twelve Helpful conditions have different cover stories
to explain how the training items are sampled. Did people generalize differently on the basis
of the explanation they receive? We examine this by comparing both of these conditions
to the Four condition. People in the Twelve Random condition (top row of Figure 10,
responses shown in black) are more likely to classify test stimuli as belonging to category
A than people in the Four condition (response shown in gray). In contrast, people in the
Twelve Helpful condition (bottom row), who are told that the eight additional exemplars
had been selected from the category by a helpful teacher, show a similar pattern of response
to people in the Four condition.

In order to quantify these effects, three contrasts were created based on subsets of the
data. For each contrast, we calculate the posterior odds for the three linear models defined
in Experiment 1. To determine which of the three models best captures the data for each
contrast, Bayes factors for each model are constructed relative to the Value Only model.

First, we compare performance in the Twelve Random and Twelve Helpful
conditions to determine if the instruction manipulation changes how people processed the
observations (top row of Table 3). This comparison favors the interaction model, indicating
that the two conditions that differ only in their cover story produce different generalizations.

To determine how the change in generalization due to more observations is impacted
by the instruction manipulation, both twelve-item conditions are compared to the Four
observation condition (middle and bottom rows of Table 3). The results mirror the quali-
tative patterns in Figure 10 and show markedly different results for the two contrasts. The
contrast between the Four and the Twelve Random conditions is best captured by the
Interaction model that indicates a difference between conditions. This is not the case for
the contrast between the Four and Twelve Helpful conditions, which is best captured
by the Value Only model, suggesting that with the helpful instruction manipulation there
is no effect of additional category items.

Discussion

The results from Experiment 3 indicate a difference in generalization due to a cover
story manipulation of how items were sampled. People who were told the items come from
a helpful teacher did not show any category expansion when seeing additional items, but
people who were given no explanation did show category expansion.

While these patterns are consistent with the predictions of the two-category GCM
(Figure 1), a compelling account of why the cover story difference between the Twelve
Random and Twelve Helpful conditions changes generalization behavior is lacking.
Furthermore, the lack of change in the category generalizations as a function of category
frequency in the Twelve Helpful condition provides a demonstration that relative fre-
quency alone does not ensure category expansion. Instead, the effect of category frequency
seems to be moderated by assumptions about how items are sampled.

These results are more challenging for the two-category Bayesian Generalization
model that assumes training items are strongly sampled (Figure 4). Indeed, the predic-
tions of this model do not match the observed pattern of results. However, the predictions
of the weak sampling versions of this model do (left and center panels of Figure 8). Specif-
ically, generalization in the Twelve Helpful condition, which provides an explanation
of the frequency difference that is not connected to base rates, matches the generalization
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Bayes Factor (relative to Value Only)

Contrast Best Model Value Only Value + Condition Interaction

Random vs. Helpful Interaction 1 : 1 1.3 : 1 7.2 : 1
Four vs. Twelve Random Interaction 1 : 1 2.5 : 1 190 : 1
Four vs. Twelve Helpful Value Only 1 : 1 0.11 : 1 2.8× 10−4 : 1
Table 3
Comparison of how well three different linear regression models capture the results from sub-
sets of the two category experiment with sampling assumption manipulation (Experiment 3).
Top row: Contrasting the results from the Twelve Helpful and Twelve Random con-
ditions shows that the Interaction model, which includes both stimulus value and the
condition (random instructions or helpful instructions), as well as an interaction term, best
captures the data. Middle row: Similarly, the contrast between the Four and Twelve
Random conditions is also best explained by the Interaction model which includes dif-
ferences between the Four and Twelve Random conditions. Bottom row: In contrast,
analysis of data from the Four and Twelve Helpful conditions shows that the Value
Only model, without any difference between the the Four and Twelve Helpful condi-
tions, best captures the data. Bayes factors are expressed as odds ratios against the Value
Only model reported to two significant figures.

pattern of the weak sampling Bayesian generalization model that does not incorporate base
rate information into the decision rule (left panel). The Twelve Random condition, which
does not provide an explanation of the difference in category frequency, matches the pre-
dicted pattern of the weak-sampling Bayesian Generalization model that incorporates base
rate information into the decision rule (middle panel).7

Rather than supporting the strong sampling Bayesian Generalization model in a cate-
gorization task, these results are more consistent with a shift in the Bayesian Generalization
model to an assumption of weak sampling in the presence of items from two categories. How-
ever, much like the GCM, the Bayesian Generalization framework does not predict why the
shift in sampling assumptions occurs. This issue is addressed in the next section.

General Discussion

Taken together, the results from Experiments 1 and 2 paint a clear picture: the effect
of increasing sample size is qualitatively different in categorization tasks and generalization
tasks. In an inductive generalization problem, the learner is presented with positive ex-
amples that belong to a single category, and asked to determine whether novel items also
belong to this category. In the generalization context, the Bayesian generalization model de-
veloped by Tenenbaum and Griffiths (2001) makes a clear prediction that is replicated here:
increasing the sample size without expanding the region of psychological space spanned

7One possibility is that since the presentation of the test stimuli was similar in all conditions and appeared
superficially more similar to weak sampling, the strong sampling manipulation may not have been strong
enough to overcome this. This is an interesting avenue for future work, but for now we note that because
the test procedure was the same in all conditions it cannot be responsible for the key finding of Experiment
3, which was the change in behavior between the Twelve Random and Twelve Helpful conditions.
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by the exemplars should cause people’s generalizations to tighten. This is precisely what
Experiment 2 found.

In the categorization context, the opposite pattern holds. The exemplar model pre-
dicts that if we increase the sample size for one category without changing the region of
psychological space that it covers, then the effect should be very small and in the opposite
direction: a category frequency effect should apply and as a consequence the categorization
boundary should move away from the category. This is precisely what Experiment 1 found.

In one sense the results should be unsurprising: as a categorization model, the GCM
outperforms the Bayesian model on categorization problems; and as a generalization model
the Bayesian model outperforms the GCM on generalization tasks. However, unless one
is prepared to give up on the notion that categorization and generalization are related
inductive problems, this is not a terribly satisfying answer.

Experiment 3 attempted to test one possible explanation for the generalization dif-
ferences between categorization and generalization: that learners in the two tasks make
different assumptions about how the items are sampled. Without a method that could
explicitly measure sampling assumptions, we turn instead to directly manipulating sam-
pling assumptions via the cover story. The results indicate that participants not given a
justification for the difference in category frequency show expansion of the more frequent
category, while participants given a justification beyond true category frequency show no
such expansion.

Addressing the inconsistency: the Bayesian generalization model

From the Bayesian perspective, a natural resolution to this inconsistency is to argue
that participants bring different inductive biases to one-category generalization and multi-
category categorization tasks. We might expect that in a generalization task, the mere
fact that the experiment presents positive examples from a single category suggests that
items are generated by sampling from items within the category. If this strong sampling
assumption properly describes the learner’s theory of the experimental task, then the size
principle holds and as a consequence we should expect generalization gradients to narrow as
more data are received. When presented with a single category to learn about, this seems
to be exactly what people assume is generating the items.

In a categorization task, it is not at all clear what sampling model should be appro-
priate. The Bayesian categorization model outlined earlier in the paper is based on the
assumption that the experiment generates stimuli via a two stage procedure. On any given
trial the experimenter first selects a category (with probability given by the category fre-
quencies); then having chosen a category, the experimenter chooses an exemplar from that
category. This sampling procedure is the natural analog of the strong sampling model, as
applied to a categorization task. It is not an inherently unreasonable assumption for a par-
ticipant to make. Many real world categorization problems have a similar flavor, in which
the categories are selected first, and then exemplars are sampled from those categories. The
set of players competing in a soccer game come from such a sampling procedure: the two
teams (categories) are first selected by the league and then players (item exemplars) from
those teams define the set of players.

As reasonable as this sounds, it is by no means the only assumption that people
might make about how a categorization task is designed. In a weak sampling model (as
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per Shepard’s (1987) original description), the causal ordering is reversed: the world (or
the experimenter) is assumed to have a fixed set of exemplars to choose from, and those
exemplars are sampled independently of the category to which they belong. Again, there
are many real world scenarios that have this flavor. For example, when trying to guess the
colors of vehicles, it seems natural to think that the world selects directly from the set of
cars (item exemplars) without considering the color category to which they belong.

Critically, under a weak sampling assumption, the size principle does not hold and
thus generalizations should not tighten (Tenenbaum & Griffiths, 2001; Tenenbaum, 1999).
If people adopt this kind of sampling model in a categorization experiment – and assume
that the experimenter chooses directly from the set of exemplars – then the corresponding
Bayesian model does not predict a tightening effect. Specifically, such a model would
predict little to no effect of sample size, or an expansion due to a category frequency effect
in the prior probability of the category labels that change with additional exemplars. What
becomes less clear is how weak sampling alone (absent category frequency information) can
account for the difference between the random and helpful cover stories in Experiment 3.

Our point is not that the Bayesian model is incapable of capturing the effects seen in
these experiments. Rather, our point is that it appears to account for one (tightening) quite
naturally while the other (expansion) is less well theoretically motivated and more post hoc.
Why should people prefer one sampling scheme over another in these different situations?
Why, when shown a set of Daxes, do people appear to assume that the experimenter de-
liberately selected items from the target category, but when shown Daxes and Wugs they
appear to assume that the items were selected from the set of objects? Since this difference
arose even though the all other aspects of Experiment 1 and 2 were the same, the answer
is not due to stimulus differences or response methods. Either the learners made different
assumptions in Experiments 1 and 2 about how many categories existed, or they made dif-
ferent assumptions about how they were sampled. In this context, these assumptions are
impossible to tell apart and make the same prediction about what stimuli people expect
to be presented with. A Bayesian model of how people perform both generalization and
categorization must allow the learner to infer information not only about the hypotheses
of the category structure, but also about how items are sampled. However, this dynamic
updating of the likelihood function based on the items sampled is also impacted by the
cover story, as shown in Experiment 3.

Addressing the inconsistency: the exemplar-based categorization model

The similarity-based exemplar framework offered by the GCM correctly predicts what
happens in categorization tasks, but the straightforward adaptation of the model we im-
plemented makes exactly the wrong prediction in the generalization problem. According to
that model, as shown in Figure 2, the response strength for the category increases but the
criterion against which it is compared does not, producing the expansion effect.

We can produce a different prediction by proposing an alternative decision criterion.
Suppose people automatically adjust the threshold to compensate for the rise in response
strength for the target category. If, as in Nosofsky et al. (2011) where the threshold depends
on list length in a recognition memory task, the threshold (φ) for accepting a new item
increases as a linear function (m) of category frequency (N) then Equation 4 would be
replaced with
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Figure 11 . Modified generalization behavior in the GCM when the threshold scales linearly
(m = 1) with sample size. The model now predicts that sample size should have no effect
on people’s willingness to endorse the category.

P (y ∈ c) = η(y, c)
η(y, c) +mN

(13)

and the predictions of the model now become rather different. As Figure 11 illustrates,
if the multiplicative factor for the relationship between threshold and sample size is one,
the GCM now predicts a null effect of sample size in Experiment 2. Furthermore, by also
changing the stimulus generalization parameter λ and the slope m, this version of the GCM
can produce the qualitative tightening of generalization curves observed in the data.

Other theoretical approaches to this issue are also possible. For instance, previous
work examining how response bias and category variability are related (Cohen, Nosofsky, &
Zaki, 2001) offers one possible answer. One might imagine that response biases are adjusted
strategically as a consequence of the assumed sampling process, which would account for the
results in Experiment 3. Another possible theory would connect the stimulus generalization
parameter λ to assumptions about sampling, as previous work has shown excellent fits to
data when this parameter varies as a function of memory strength due to serial position
in memory tasks (Donkin & Nosofsky, 2012; Nosofsky et al., 2011). Formalizing post-
hoc relationships about how these parameters should change as a function of sampling
assumptions and category frequency is beyond the scope of this work, but it clearly requires
integrating information about how learners reason about both sampling and frequency.

Sampling assumptions and category frequency

What then is the appropriate model of how learners incorporate information about
the number of categories, the frequency of those categories, and their assumptions about
how categories and items are sampled? The results from these experiments suggest the rela-
tionship involves two moving parts. First, learners appear to shift from category frequency
dependent reasoning in a one-category generalization context to a frequency independent
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reasoning in a two-category categorization context. Second, the role of category frequency
information in categorization is flexible and depends on the assumptions the learner makes
about how items are sampled. Though this poses a challenge to existing theories of both
categorization and generalization, treating categorization and generalization as fundamen-
tally different tasks fails to capture the flexible nature of human cognition as it adapts and
shifts beliefs as more information becomes available.
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Appendix: Bayesian multi-category generalization

To derive a multiple-category version of the Bayesian generalization model, we adopt
a formalism very similar to the Tenenbaum and Griffiths (2001) model, which in turn builds
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Figure 12 . Probabilistic model for the training data.

on the formal approach developed by Shepard (1987). Let x = (x1, . . . , xN ) denote a set
of N items that lie in a bounded unidimensional space, which we assume to be xi ∈ [0, 1]
without loss of generality. These items are sampled from one of K categories, where we let
c = (c1, . . . , cN ) denote the category from which each exemplar is drawn, ci ∈ (1, . . . ,K).
For simplicity we assume that each item belongs to exactly one category, but the extension
of the categories along the stimulus dimension can overlap.

Given this set up, the learning problem is formalized as follows. On any given trial the
category label ci is chosen (by the experiment) at random, where the probability P (ci = k)
of selecting the k-th category is denoted θk. This probability is unknown a priori to the
Bayesian learner, and for simplicity we assume the learner places a uniform prior P (θ) ∝ 1
over these probabilities. Having chosen the category ci = k, the experiment (or experi-
menter) next selects the exemplar xi to present to the learner. The k-th category is associ-
ated with a particular “consequential region” of the stimulus space, hk, and we assume that
the specific exemplar is selected uniformly at random from that region. In Tenenbaum and
Griffiths’s (2001) terminology this is a strong sampling model:

P (xi|ci = k, hk) =
{

1/|hk| if xi ∈ hk

0 otherwise

where |hk| denotes the size of the consequential region. Shepard (1987) adopts the assump-
tion that every category occupies a connected region within the stimulus space, which for
a unidimensional space X corresponds to an interval [lk, uk]. Shepard’s “connected region”
assumption has been adopted in a number of other papers (e.g., Navarro et al., 2012) but
has been relaxed in other contexts (e.g., Tenenbaum & Griffiths, 2001; Navarro, 2006).
Our application is simple enough that Shepard’s original assumption will suffice, and under
this assumption the size of category k is simply the length of the corresponding interval
|hk| = uk − lk. The structure of the model is illustrated in Figure 12.
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Using information about category extensions and base rates

We let h = (h1, . . . , hK) denote the true consequential regions for each of the K
categories, and assume that the learner places independent and identical priors over each
of these regions P (h) =

∏K
k=1 P (hk). Given the training exemplars x = (x1, . . . , xN ) and

their corresponding labels c = (c1, . . . , cN ), a Bayesian reasoner learns about the category
extensions h and base rates θ as follows

P (h,θ|x, c) ∝ P (x, c|h,θ)P (h,θ)
= P (x|c,h)× P (h)× P (c|θ)P (θ)

=
N∏

i=1
P (xi|ci, hci)×

K∏
k=1

P (hk)× P (c|θ)P (θ)

=
K∏

k=1

P (hk)
∏

i|ci=k

P (xi|ci = k, hk)

× P (c|θ)P (θ)

∝ P (θ|c)
K∏

k=1
P (hk|x(k))

where x(k) denotes the set of training exemplars known to belong to category k. As
this illustrates, the posterior distribution factorizes in the natural way. Because the K
category extensions are assumed to be independent, the model learns about them inde-
pendently, and because the category extensions and category base rates are independent
(and because the category labels are always observed), learning about the base rates θ is
independent of learning about the category extensions h, and these components can be
treated separately. For the base rate, we assume the learner places a uniform prior over
the base rates, θ ∼Dirichlet(1, . . . , 1), and so via conjugacy the posterior distribution θ|c
is Dirichlet(1 + n1,. . . ,1 + nK) where nk denotes the number of exemplars observed from
category k. The posterior predictive value nk+1

N+K is the estimated base rate for the k-th
category. For the category extensions, the posterior distributions over hk are the same ones
that would be obtained from the Tenenbaum and Griffiths (2001) model, applied separately
to each category.

Inference about the test item

During the test phase of the experiment, the model switches to a weak sampling
assumption for the test items, i.e., the test items are not necessarily sampled from any
category, they are just queries chosen without any particular link to the category. This
simplifying assumption matches the GCM and allows for analyses in which the category
representations are stable after training. However, relaxing this assumption to learn during
the test phase is an interesting future direction that has been pursued in other contexts
(e.g Zaki & Nosofsky, 2007). Formally, when asked to assess the probability that this item
belongs to the k-th category, the learner considers the frequency (base rate) with which the
k-th category P (cy = k|c) occurs, as well as the probability P (y|x(k), cy = k) that the test
item falls within the relevant category extension. The probability of assigning y to category
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k is thus given by:

P (cy = k|y) = P (cy = k|c)P (y|x(k), cy = k)∑K
k′=1 P (cy = k′|c)P (y|x(k′), cy = k′)

From the generative model above, the best estimate of P (cy = k|c) is the posterior predictive
value nk+1

N+K , which is used as the estimated base rate for the k-th category in Equation 11,
p(c).


