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Abstract5

Discussions of model selection in the psychological literature typically frame
the issues as a question of statistical inference, with the goal being to deter-
mine which model makes the best predictions about data. Within this set-
ting, advocates of leave-one-out cross-validation and Bayes factors disagree
on precisely which prediction problem model selection questions should aim
to answer. In this comment, I discuss some of these issues from a scien-
tific perspective. What goal does model selection serve when all models are
known to be systematically wrong? How might “toy problems” tell a mis-
leading story? How does the scientific goal of explanation align with (or
differ from) traditional statistical concerns? I do not offer answers to these
questions, but hope to highlight the reasons why psychological researchers
cannot avoid asking them.
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6

Model selection seems to be an evergreen topic in mathematical psychology. Given7

two or more competing theories about the world, each instantiated as parameterised com-8

putational models that provide different accounts of a data set, how should we decide which9

model is better supported by the data? Typically we formulate this as a statistical inference10

problem, with various authors arguing for Bayes factors (e.g., Wagenmakers 2007), mini-11

mum description length (e.g., Grünwald 2007), cross-validation (e.g., Browne 2000) and a12

variety of other possibilities besides. To highlight the behaviour of different model selec-13

tion methods, we often consider “toy problems”, simplified versions of serious inferential14

scenarios designed to elicit different intuitions about whether the model selection proce-15

dure behaves sensibly. The large-sample results presented by Gronau and Wagenmakers16
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(2018) fall within this tradition, highlighted by the Dennis Lindley quote that motivates17

the work. The results are perhaps unsurprising given the known inconsistency of orthodox18

cross-validation estimators (Shao 1993), but there is value in highlighting the issue to a19

broader audience and noting that a Bayesian formulation does not remove this limitation.20

To the extent that some psychologists are unaware of the need for care when using cross-21

validation methods – as indeed they may be unaware of a need for caution with respect to22

Bayes factors or any other model selection procedure – the paper strikes me as helpful and23

timely.24

As much as I enjoyed the paper, I wonder whether the simplicity of exposition comes25

at a cost. As Vehtari, Simpson, Yau and Gelman (2018) note in their commentary, Gronau26

and Wagenmakers’ examples apply leave-one-out cross-validation in a fashion that is rather27

at odds with how its advocates recommend that it be used. The original paper constitutes a28

strong argument against naive or accidental misuse of some cross-validation procedures, but29

the implications for best practice seem much less obvious. Noting that other commenters30

have discussed technical issues in detail, my goal in this paper is to take a slightly broader31

view on the tensions between scientific judgement and statistical model selection.32

Mistaking the map for the territory33

The quote by Lindley asks us to consider the question “if you can’t do simple problems,34

how can you do complicated ones?” While I understand and sympathise with the sentiment,35

for my own part I would be tempted to reverse the warning: if we only solve simple problems,36

we may never learn how to think about the complex ones. As someone who has tried to use37

many different model selection tools over the years, I am of the view that the behaviour of38

a selection procedure applied to toy problems is a poor proxy for the inferential problems39

facing scientists. As such, if we are to motivate our approach to model selection by quoting40

famous statisticians, my preference would be to start with George Box’s (1976, p 792)41

comment on the dangers of selective worrying:42

Since all models are wrong the scientist must be alert to what is importantly43

wrong. It is inappropriate to be concerned about mice when there are tigers44

abroad.45

Everyone who develops model selection tools is of course aware that all models are wrong.46

Scientists do not fully understand the phenomena we are studying (else why study them?)47

and every formal model-based description of the phenomenon is wrong in an unknown,48

systematic fashion. One consequence of this, I think, is that while it is usually easy to49

construct artificial scenarios in which any given procedure misbehaves, it is often difficult50

to know what implications they might have for the real world scientific problems they51

approximate.52

To illustrate how easy it is to tell a misleading story, consider the behaviour of the53

Bayes factor – a procedure I presume Gronau and Wagenmakers would endorse as sensible54

– when presented with a minor variation of their Example 1. In this scenario there are two55
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models, a “general law”M1 which asserts that a Bernouilli probability θ equals 1; and an56

“unknown quantity” modelM2 that expresses uncertainty by placing a uniform Beta(1,1)57

prior over θ. Given a sample n successes (i.e., all observations are 1) the Bayes factor will58

selectM1 with certainty as n→∞, and the variant of leave-one-out cross-validation they59

discuss does not. The behaviour of the Bayes factor seems desirable insofar as M1 is the60

true model in this scenario. However, it is not difficult to reverse this intuition and construct61

an example where this same certainty seems undesirable.62

Consider the “negligible error” scenario in whichM1 is almost correct: the general law63

holds, apart from a single failure. The probability of success is 1, in the sense that one failure64

(or indeed any finite number of failures) in an infinite sequence of successes forms a set of65

measure zero. The true probability of success in a frequentist sense is limn→∞(n− 1)/n =66

1, and similarly, the posterior expected value of θ for the unknown quantity model M267

converges on θ = 1 in the large sample limit. In any sense that a pragmatic scientist would68

care about, the general law would count as the “correct” account for the phenomenon.169

Nevertheless the general law model M1 does not have support at the data x. So while70

P (x|M1) = 0 for all n after the single failure has occurred, M2 assigns positive prior71

probability to the data72

P (x|M2) =
∫ 1

0
θn−1(1− θ)dθ = B(n, 2) = (n− 1)!1!

(n+ 1)! = (n(n+ 1))−1

The Bayes factor P (x|M1)/P (x|M2) is therefore 0, and selects against the general lawM173

with certainty even though M1 makes an “almost exactly true” prior prediction, whereas74

M2 assigns the same degree of prior belief to the true rule θ = 1 as it does to the exact75

opposite rule, θ = 0.76

To a statistician the reason for this misbehaviour is obvious, and rather boring: a77

general law formulated as a model that does not accommodate measurement error (and78

therefore lacks support across most of the sample space) will behave poorly in a world such79

as our own that actually does have such errors. The fact that the Bayes factor produces80

counterintuitive inferences when asked to choose between extremely bad models is not prima81

facie evidence that we should discard Bayes factors. Rather, it requires that we recognise82

that Bayes factors can produce strange answers when none of the models are “true”. In this83

instance the problem arises because the large sample behaviour of the Bayes factor is to84

select the model whose prior predictive distribution P (x|M) is closest in Kullback-Leibler85

divergence to the true data generating mechanism,2 and this is often not the criterion that86

a scientist cares about. In real life none of us would chooseM2 overM1 in this situation,87

because from our point of view the general law model is actually “closer” to the truth than88

the uninformed model. Because Kullback-Leibler divergence is sometimes a poor proxy89

for sensible judgement, the scientist would (quite correctly) disregard the Bayes factor and90

1While there are many people who assert that “a single failure is enough to falsify a theory”, I confess I
have not yet encountered anyone willing to truly follow this principle in real life.

2For instance, Gelman, Carlin, Stern & Rubin (2004, p586-587) present an analogous convergence result
for the posterior distribution P (θ|x) within a single model M. The result generalises to the Bayes factor by
noting that the Bayes factor identifies a model with the prior predictive distribution P (x|M). Substituting
P (x|M) for the role of P (x|θ) in their derivation produces the necessary result.
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make the sensible choice. Importantly though, the fact that the Bayes factor does something91

unhelpful in a contrived example designed to make it misbehave tells us very little – one92

way or the other – about whether it is useful in real life. The example I chose is silly, and93

its evidentiary value is minimal.94

Viewed more generally, I find it difficult to know how to apply simple examples to95

real world problems. There are no shortage of illustrations that particular model selection96

procedures misbehave when applied to problems they are not built to solve. For instance,97

in one of my early papers (Navarro 2004) I documented an issue with (a specific version98

of) the minimum description length criterion developed by Rissanen (1996) and introduced99

to psychology by Pitt, Myung and Zhang (2002). The particular issue, in which it is100

possible for a nested model to be judged more complex than the encompassing model, arose101

when trying to solve an actual psychological model selection problem (see Navarro, Pitt &102

Myung 2004) in which we compared an exponential forgetting function y = a exp(−bt) to103

the strength-resistance model y = a exp(−btw) proposed by Wickelgren (1972) and several104

other models besides. Given that the exponential function is a special case of the strength-105

resistance model, it is logically impossible for it to be more complex, and the behavior of106

the minimum description length criterion here is self-evidently absurd. Does that mean that107

this criterion is “worse” than simpler criteria such as such as AIC (Akaike 1973) and BIC108

(Schwarz 1978), in which model complexity is assessed simply by counting the number of109

parameters? To me this seems the wrong lesson to draw, given that AIC and BIC both have110

numerous flaws of their own. Fault can be found with any formal criterion for statistical111

inference, as is nicely illustrated by the many documented concerns with p-values listed in112

the psychological literature going back at least to Edwards, Lindman & Savage (1963). As113

any survey of the statistical literature will reveal (e.g., Vehtari & Ojanen 2012), even the114

basic desiderata for what model selection is supposed to accomplish are not agreed upon.115

Viewed from this perspective, showing that a particular procedure behaves strangely in an116

artificial scenario is not without value, but one should be wary of reading too much into117

such demonstrations.118

Escaping mice to be beset by tigers119

To the extent that I am arguing that playing with toys leads us to encounter mice, I120

suppose it is incumbent on me to say something about tigers. To my mind, there is at least121

one tiger in plain view, namely the implied claim that scientific model selection questions122

are addressable with statistical tools. If scientific reasoning necessarily takes place in a123

world where all our models are systematically wrong in some sense (often referred to as the124

M-open case), what do we hope to achieve by “selecting” a model? To me, it seems that125

much of this is tied to the question of what we consider the function of a model to be. In126

considering this question Bernardo and Smith (2000, p238) write127

Many authors . . . highlight a distinction between what one might call scientific128

and technological approaches to models. The essence of the dichotomy is that129

scientists are assumed to seek explanatory models, which aim at providing insight130

into and understanding of the “true” mechanisms of the phenomenon under131
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study; whereas technologists are content with empirical models, which are not132

concerned with the “truth”, but simply providing a reliably basis for practical133

action in predicting and controlling phenomena of interest.134

Under a “technological view”, the primary role of a model is predictive, though the pre-135

diction problem differs depending on which methods one prefers. For example, under the136

Bayes factor approach a model is identified with its prior predictive distribution P (x|M),137

whereas under a cross-validation approach one is more likely to focus on the posterior pre-138

dictive distribution P (x′|x,M), where x′ represents future data drawn from the (unknown)139

true distribution. Nevertheless, in both cases the primary role of a model is operationalised140

in terms of predictions about data. In contrast to the predictive perspective, the “scientific141

view” as described by Bernardo and Smith (2000) places more emphasis on the interpretabil-142

ity and explanatory value of P (x|θ,M). Ultimately Bernardo and Smith (2000) conclude143

that the distinction is not especially important: if scientific models are evaluated on their144

ability to make predictions, then the “scientific view” reduces to the “technological view”145

for most intents and purposes.146

My view is a little different. It strikes me as notable that statistics papers typically147

define the term “generalisation” in a way that differs markedly from how psychologists define148

the term when studying human inductive reasoning (e.g., Lake, Salakhutdinov & Tenen-149

baum 2015). In the statistical context, predictive generalisation performance is typically150

assessed with respect to test data sampled from the same process as the training data (e.g.,151

Vehtari & Ojanen 2012). In the literature on human reasoning, however, generalisation is152

typically assessed by examining how people think about test items that are systematically153

different to the data upon which they were trained, and cannot be (easily) described as re-154

alisations of the “same” data generating process from which the training data arose. In my155

opinion at least, scientific model selections problem seem to have more in common with the156

latter than with the former. To illustrate this, consider the question of why we consider the157

Rescorla-Wagner model of Pavlovian conditioning (Rescorla & Wagner 1972) to be such an158

important milestone in the development of theories of learning. While the model did indeed159

provide a good account of a range of existing conditioning phenomena, such as blocking160

(Kamin, 1969), overshadowing (Pavlov, 1927), conditioned inhibition (Rescorla, 1969), and161

contingency effects (Rescorla, 1968) the truly impressive contribution was not the ability to162

predict new data from replications of these experiments but rather to successfully anticipate163

new phenomena, such as overexpectation (Lattal & Nakajima, 1998) and super conditioning164

(Rescorla, 1971). That is, one of the most important functions of a scientific theory is not165

simply to predict new data from old experiments, but to encourage directed exploration of166

new territory, as illustrated by the important role the Rescorla-Wagner model has played in167

assisting neuroscientists to investigate reward prediction error signals (e.g., Schultz, Dayan168

& Montague, 1997). Curiously, it has sometimes been argued (Devezer, Nardin, Baum-169

gartner and Buzbas, under review) that the apparent paradox of scientific progress in the170

absence of replication (Shiffrin, Borner & Stigler 2018) may be tied to exactly this kind of171

theory-guided scientific exploration.172

It is not that statisticians are unaware of these issues, of course. For example, in173

a thorough survey on the literature on Bayesian prediction methods, Vehtari and Ojanen174
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(2012, p174-177) characterise the issue very cleanly, by noting that if the training data175

are all conditioned on specific values v for auxiliary or explanatory variables but the test176

data depend on new values v′, then the prediction problem changes considerably. If the177

values of v′ can differ systematically from the known values v – as might happen if a178

researcher with different theoretical views designs a different experiment to one’s own, or179

the task used to isolate a psychological process changes – I am skeptical that any statistical180

framing of the problem is any more than an “in principle” solution. None of us are in a181

position to know what future experiments we or others may run, and estimating the future182

performance of a model with regards to data collected via unknowable experiments is likely183

impossible. To pretend otherwise strikes me as a form of what Box (1976, p797-798) referred184

to as mathematistry: using formal tools to define a statistical problem that differs from the185

scientific one, solving the redefined problem, and declaring the scientific concern addressed.186

To illustrate how poorly even the best of statistical procedures can behave when187

used to automatically quantify the strength of evidence for a model, I offer the following188

example. As part of an exercise evaluating category learning models, Lee and Navarro (2002)189

collected similarity ratings for nine items that varied on two ternary-valued features, shape190

(circle, square or triangle) and colour (red, green or blue). The optimal multidimensional191

scaling solution for representing these items was estimated by solving a model order selection192

problem, using the most reasonable statistical criterion we could think of at the time (see Lee193

2001a, 2001b). The estimated solution embeds these nine items within a four dimensional194

space: two dimensions are used to represent the colours (i.e., red, green and blue form195

the vertices of a triangle), and two more are used to represent shape. No more than that196

is required to describe the similarity judgements that people made: as a consequence this197

stimulus representation ends up being the simplest adequate account of the data and is198

arguably the statistically “correct” representation to estimate from these data.199

Nevertheless, when we used this stimulus representation as part of a categorisation200

task that used those same stimuli – shifting the context from v to v′ as it were – categori-201

sation models that relied on this representation to define a measure of stimulus similarity202

behaved very poorly. These failures did not occur due to a statistical failure in our multi-203

dimensional scaling procedure, they arose because of a substantive scientific concern that204

relates to the difference between the two tasks. The four dimensional embedding space does205

not allow dimensional attention rules (e.g., Kruschke 1992) to be applied to specific feature206

values, because the features themselves are not represented explicitly as dimensions. That207

is, because “circle-versus-not-circle” is not represented as a primitive feature within this208

four-dimensional multidimensional scaling solution, a categorisation model that relies on209

this representation cannot use it as the basis for selective attention, even though human210

participants do precisely this. To generalise sensibly from the similarity judgement task to211

the categorisation task, the required representation involved placing the same items on a212

six dimensional hypercube3 (i.e., employing six binary-valued features: circle vs not-circle,213

square vs not-square, etc).214

Critically, the reason this seems to happen is that there are factors v′ that influence215

3For the purposes of full disclosure, I should note that the precise situation from Lee and Navarro (2002)
is quite a bit more complex than this description implies, and there are several details about how we had to
adapt a model from one context to be applicable to the other have been omitted.
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Figure 1 . Model selection as viewed as a statistical problem typically emphasises quantita-
tive measures of agreement between model predictions (or fitted values, x-axis) and human
responses (y-axis). Even without any explanation given for the condition names or the
experimental design, it is clear that the model in this figure provides a very good fit to
the data. Nevertheless, knowing that the model fits depend on the values of parameters
estimated from data, one might be tempted to ask if the researcher has encountered the
Scylla of overfitting. Perhaps this apparent good performance is an illusion.

the notion of “stimulus similarity” (e.g., learned dimensional attention based on feedback,216

emphasis on differences between items) that applies in the categorisation task; and these are217

subtly different to the corresponding factors v (e.g., no feedback, emphasis on commonalities218

among items) that apply to “stimulus similarity” in the direct elicitation task. In other219

words, because these auxiliary factors differ systematically between the two tasks, even220

this “simple” generalisation turns out to be difficult and – while statistical measures of the221

adequacy of different similarity models were undoubtedly useful to us – it is unclear to me222

how we could have solved this model selection problem as a purely statistical exercise.223

Between the devil and the deep blue sea224

Gronau and Wagenmakers (2018) frame the question of model selection as a perilous225

dilemma in which one is caught between two beasts from classical mythology, the Scylla of226

overfitting and the Charybdis of underfitting. I find myself often on the horns of a quite227

different dilemma, namely the tension between the devil of statistical decision making and228

the deep blue sea of addressing scientific questions. If I have any strong opinion at all on229

this topic, it is that much of the model selection literature places too much emphasis on230

the statistical issues of model choice and too little on the scientific questions to which they231
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attach.232

To again focus on my own papers rather than criticise others, consider the model fits233

reported by Hayes, Banner, Forrester and Navarro (under review). In that paper we were234

interested in how people’s inductive reasoning from data is shaped by what they know about235

the process by which the data were selected, referred to as sensitivity to sampling in the236

literature. This is a theme I have explored across multiple papers in the last several years.237

To model sensitivity to sampling we relied on earlier work by Tenenbaum and Griffiths238

(2001), as do most papers I have written on this topic (e.g., Navarro, Dry & Lee 2012,239

Ransom, Perfors & Navarro 2016, Voorspoels, Navarro, Perfors, Ransom & Storms, 2015).240

However, the task that we used in the Hayes et al. (under review) paper differs from241

previous ones in many ancillary respects, and these ancillary details need to be formalised242

in specific model choices. Some such choices (e.g., how smooth is an unknown generalisation243

function?) can be instantiated as model parameters, but others (e.g., what class of functions244

is admissable to describe human generalisation?) are not so simple. I think the choices I245

made are sensible, but reasonable people might disagree.246

How should I evaluate my modelling choices? A statistical perspective on this in-247

ference problem might begin by estimating model parameters θ and producing a measure248

of predictive performance. Setting aside the computational details of how one does this,249

the result is likely to lead to a comparison between model predictions and human perfor-250

mance similar to the one shown in Figure 1. Even without knowing the particular details251

of the experiments, the scatterplot showing the fitted model values (x-axis) against the av-252

erage reponse given by human participants (y-axis) across a large number of experimental253

conditions strongly suggests that the model fits the empirical data well.254

Perhaps it fits too well? When presented with such a figure, a reader familiar with255

the model selection literature might be concerned that I have run afoul of the Scylla of256

overfitting. This is not an unreasonable concern, but I find myself at a loss as to how cross-257

validation, Bayes factors, or any other automated method can answer it. My scientific goal258

when constructing this model was not to maximise the correlations as shown in Figure 1,259

it was to make sense of the observed generalisation curves shown in Figure 2. The data in260

Figure 2 are the same as those plotted in Figure 1, but drawn in a way that highlights the261

empirical effects of theoretical interest. In each column there are multiple generalisation262

curves shown, plotted separately for each experimental condition, with human data at263

the top and model predictions at the bottom. It is clear from inspection that the data are264

highly structured, and that there are systematic patterns to how people’s judgements change265

across conditions. The scientific question of most interest to me is asking what theoretical266

principles are required to produce these shifts. Providing a good fit to the data seems of267

secondary importance. From visual inspection it is clear that the model captures most268

patterns in the data, but not all. In particular, looking at the systematic model failure269

in the second column from the right, the same reader might now be inclined to wonder270

if I have fallen prey to the Charybdis of underfitting. So which of the mythical beasts,271

Scylla or Charybdis, have I encountered? Would a cross-validation analysis or Bayes factor272

calculation tell me? It seems unlikely.273

To my mind, the bigger concern here is that to focus too heavily on the issue of274
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Figure 2 . Scientific model selection is often more concerned with making sense of the
systematic patterns observed in empirical data. This plots depict the extent to which
people (top row) or a model (bottom row) will generalise (y-axis) from a small sample
of training data to a novel item, shown as a function of the similarity of the novel item
(x-asis) to the training data, with the most similar items shown on the left. Different
panels (columns) and curves plotted separately as a function of three different experimental
conditions reported by Hayes et al (under review). Even without a clear explanation of
the different manipulations and their theoretical import, it is clear that the model provides
a good account of the data in most conditions, but notably cannot reproduce the effect
shown in the second panel from the right. One may be led to wonder if the researcher has
encountered the Charybdis of underfitting. (Note: the data and model are the same as
those plotted in Figure 1)

under/overfitting is to be seduced by the devil of statistical decision making. When we275

actually analysed the data, the allure of the deep blue sea of science led us to a different276

perspective. The approach we took was to ignore the quantitative fits almost entirely,277

and focus on the extent to which the key qualitative patterns in the data are an invariant278

prediction of the model across different choices of the parameter values θ. Loosely inspired279

by the “parameter space partitioning” idea introduced by Pitt, Kim, Navarro and Myung280

(2006), we defined a set of ordinal constraints in the data that any theoretical account would281

need to explain (e.g., increasing the number of observations caused a crossover effect under282

property sampling, column 4 from the left), and then showed that under most parameter283

values in the model, the predictions about these ordinal effects did not change. In other284

words – to recast this in the “scientific versus technological” language used by Bernardo and285

Smith (2000) – the scientifically important patterns are captured by P (x|θ,M) regardless286
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of the specific value of θ.287

To my way of thinking, understanding how the qualitative patterns in the empirical288

data emerge naturally from a computational model of a psychological process is often more289

scientifically useful than presenting a quantified measure of its performance, but it is the290

latter that we focus on in the “model selection” literature. Given how little psychologists291

understand about the varied ways in which human cognition works, and given the artifi-292

ciality of most experimental studies, I often wonder what purpose is served by quantifying293

a model’s ability to make precise predictions about every detail in the data. Much as the294

false confidence of the Bayes factor in the “negligible error” scenario I constructed at the295

beginning is entirely an artifact of its sensitivity to a bad ancillary assumption made by one296

of the models (that θ must be exactly 1 for a general law to hold), it seems to me that in297

real life, many exercises in which model choice relies too heavily on quantitative measures298

of performance are essentially selecting models based on their ancillary assumptions. It is299

unclear to me if this solves a scientific problem of interest.300
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