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Abstract
Inductive generalization, where people go beyond the data provided, is a
basic cognitive capability, and underpins theoretical accounts of learning,
categorization and decision-making. To complete the inductive leap needed
for generalization, people must make a key “sampling” assumption about
how the available data were generated. Previous models have considered
two extreme possibilities, known as strong and weak sampling. In strong
sampling, data are assumed to have been deliberately generated as positive
examples of a concept, whereas in weak sampling, data are assumed to have
been generated without any restrictions. We develop a more general account
of sampling that allow for an intermediate mixture of these two extremes,
and test its usefulness. In two experiments, we show that most people com-
plete simple one-dimensional generalization tasks in a way that is consistent
with their believing in some mixture of strong and weak sampling, but that
there are large individual differences in the relative emphasis different people
given to each type of sampling. We also show experimentally that the rela-
tive emphasis of the mixture is influenced by the structure of the available
information. We discuss the psychological meaning of mixing strong and
weak sampling, and possible extensions of our modeling approach to richer
problems of inductive generalization.
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Introduction

The ability to make sensible inductive inferences is one of the most important capabil-
ities of an intelligent entity. The capacity to go beyond the data and make generalizations
that can hold for future observations and events is extremely useful, and is of interest not
only to psychologists, but also to philosophers (e.g., Goodman, 1955) and researchers with
an interest in formal theories of learning (e.g., Solomonoff, 1964). From a psychological per-
spective, experimental research dating back to Pavlov (1927) demonstrates the tendency of
organisms to generalize from one stimulus to another, with learned contingencies being ap-
plied to novel but similar stimuli. Critically, in many cases these generalizations do not
involve a failure of discrimination. Stimulus generalization is better characterized as a form
of inductive inference than of perceptual failure, and indeed the two have a somewhat dif-
ferent formal character (Ennis, 1988). As Shepard (1987, p. 1322) notes, “we generalize
from one situation to another not because we cannot tell the difference between the two
situations but because we judge that they are likely to belong to a set of situations having
the same consequence.”

One of the best-known analyses of inductive generalization is Shepard’s (1987) ex-
ponential law, which emerges from a Bayesian analysis of an idealized single-point gener-
alization problem. In this problem, the learner is presented with a single item known to
belong to some target category and the learner is asked to judge the probability that a
novel item belongs to the same category. Shepard’s analysis correctly predicts the empir-
ical tendency for these generalization probabilities to decay exponentially as a function of
distance in a psychological space (this decay function is called a generalization gradient).
The exponential generalization function is treated as a basic building block for a number of
successful theories of categorization and concept learning (e.g., Nosofsky, 1984; Kruschke,
1992; Tenenbaum & Griffiths, 2001a; Love, Medin, & Gureckis, 2004) that seek to ex-
plain how people learn a category from multiple known category members. The analysis
by Tenenbaum and Griffiths (2001a), in particular, is notable for adopting much the same
probabilistic formalism as Shepard’s original approach, while extending it to handle multi-
ple observations and cases where spatial representations may not be appropriate (see also
Russell, 1986). In a related line of work, other researchers have examined much the same
issue using “property induction” problems, leading to the development of the similarity-
coverage model (Osherson, Smith, Wilkie, Lopez, & Shafir, 1990), as well as feature-based
connectionist models (Sloman, 1993) and a range of other Bayesian approaches (Heit, 1998;
Sanjana & Tenenbaum, 2003; Kemp & Tenenbaum, 2009).

In this paper we investigate the implicit “sampling” models underlying inductive
generalizations. We begin by discussing the ideas behind “strong sampling” and “weak
sampling” (Shepard, 1987; Tenenbaum & Griffiths, 2001a), and developing an extension
to the Bayesian generalization model that incorporates both of these as special cases of a
more general family of sampling schemes. We then present two experiments designed to
test whether people’s generalizations are consistent with the model, and more specifically,
to allow us to determine what sampling assumptions are involved. These experiments are
designed so that we are able to look both at the overall tendencies that people display, but
also so that we can infer the sampling models used by each individual participant. Our
main findings are that there are clear individual differences in the mixture between strong
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and weak sampling used by different people, and that these mixtures are sensitive to the
patterns of observed data. We conclude with a discussion of the psychological meaning of
mixing strong and weak sampling, and of possible extensions of our modeling approach to
richer problems of inductive generalization.

Bayesian Models of Inductive Inference

In Bayesian accounts of inductive inference, the learner makes use of two different
sources of information: the pre-existing knowledge that they bring to the task (the prior),
and the information in the problem itself (the likelihood). If we let x denote the information
in the problem and let h denote some hypothesis about the property to be inferred, then
Bayes’ theorem implies that

P (h |x) = P (x |h)P (h)∑
h′ P (x |h′)P (h′) . (1)

The numerator in this expression is composed of two terms: the prior P (h), which acts to
characterize the prior beliefs, and the likelihood P (x |h), which describes the probability
that one would have observed the data x if the hypothesis h were correct. The denominator
is composed of the same two terms, summed over all possible hypotheses (i.e., over all
possible h′). When combined in this manner, the prior and the likelihood produce P (h |x),
the learner’s posterior belief in the hypothesis h. It is important to recognize that Bayesian
cognitive models are typically functionalist in orientation: they represent analyses of the
computational problem facing the learner (Marr, 1982), and tend to remain agnostic about
specific psychological processes. For the current purposes, this means that we are interested
in determining whether people’s generalizations are in agreement with the predictions of a
Bayesian analysis.

Priors

Much of the variation among Bayesian induction models can be characterized in terms
of different choices of prior. In the simplest case, the learner has an unstructured set of
hypotheses, which form the hypothesis space H, and places some simple (possibly uniform)
prior over all h ∈ H. However, it is possible to adopt a more structured approach, in
which latent mental representations constrain the hypothesis space and generate a more
sophisticated and psychologically plausible prior over the hypothesis space (e.g., Sanjana &
Tenenbaum, 2003; Kemp & Tenenbaum, 2009). For instance, in Shepard’s analysis there is
assumed to exist some low-dimensional space in which stimuli are mentally represented, and
candidate hypotheses typically correspond to connected regions in that space. Alternatively,
hypotheses could be organized into a tree structure, a causal graph, or any of a range of
other possibilities (see Kemp & Tenenbaum, 2008, 2009). In our experiments, we restrict
ourselves to the case where the prior is constrained by a simple spatial representation.

Likelihoods

In contrast to the extensive array of mental representations that can constrain the
prior, the likelihood functions considered in the Bayesian literature on inductive reasoning
have largely been restricted to two possibilities, “strong sampling” and “weak sampling”,



4

with almost no examples of empirical tests of these assumptions existing in the literature
(see later).1 Many models (Shepard, 1987; Heit, 1998; Kemp & Tenenbaum, 2009) assume
that the only role of the likelihood function is to determine whether the data are consistent
with the hypothesis. If the data are inconsistent with a hypothesis, then the hypothesis is
ruled out and so the likelihood is zero, P (x |h) = 0. If the data are consistent with the
hypothesis, then the likelihood function is constant, P (x |h) ∝ 1. Accordingly, the relative
plausibility of two hypotheses h1 and h2 that are consistent with the data does not change:

P (h1 |x)
P (h2 |x) = P (h1)

P (h2) . (2)

This kind of likelihood function is referred to as “weak sampling".2
A different approach, introduced by Tenenbaum and Griffiths (2001a), suggests that

the learner might assume data are generated from the true hypothesis. This “strong sam-
pling” assumption can take many different forms. In the simplest case, a hypothesis h that
is consistent with |h| possible observations (i.e., has “size” |h|) is associated with a uniform
distribution over these possibilities. As with weak sampling, if hypothesis h is inconsistent
with the data x then P (x |h) = 0. However, when the data are consistent with the hypoth-
esis, then P (x |h) = 1/|h|. What this means is that if two hypotheses h1 and h2 are both
consistent with the data, their relative plausibility now depends on their relative sizes:

P (h1 |x)
P (h2 |x) = |h2|

|h1|
× P (h1)
P (h2) . (3)

Supporting the original theoretical work by Tenenbaum and Griffiths (2001a), the strong
sampling approach has been applied successfully to property induction (Sanjana & Tenen-
baum, 2003), similarity judgment (Navarro & Perfors, 2010) and word learning (Xu &
Tenenbaum, 2007b).

Other models are less explicit in their sampling assumptions. For instance, the fea-
tural similarity model used by Sloman (1993) relies on the contrast model for featural
similarity (Tversky, 1977). It does not explicitly re-weight hypotheses according to their
size, and more closely approximates the weak sampling rule in Equation 2 than the strong
sampling rule in Equation 3. The similarity-coverage model does not make any explicit
statements either, but insofar as the “coverage” term attempts to measure the extent to
which the observations span the range of possibilities encompassed by the hypothesis, it is
consistent with strong sampling. Relatedly, if the generalization gradients used by various
category learning models (e.g. Nosofsky, 1984; Kruschke, 1992; Love et al., 2004) are inter-
preted in terms of the Bayesian generalization model, then a strong sampling model would
require the steepness of the generalization gradient to increase as a function of the number

1Note that this is a comment about the likelihood functions used in models for classic inductive reasoning
tasks: in the Bayesian literature more generally, there has of course been a much wider range of likelihoods
used by modellers.

2It is important to recognize that Equations 2 and 3 are simplifications. They depend both on the “strong
versus weak” distinction (namely, the extent to which distribution the generates stimuli is dependent on
the distribution over category labels) and on the specific form that the likelihood function takes (uniform
distributions in this case). The story is not so simple in general; for simplicity we restrict our discussion to
the case relevant to the experiments in this paper.
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of exemplars. In some models (e.g. Nosofsky, 1984) this is not the case, and so we might
consider them to be weak sampling models. In other cases, the model allows the width of
the the generalization gradient to be adapted over time in order to match the observed data
(e.g. Kruschke, 1992; Love et al., 2004), and so might be considered to embody a strong
sampling assumption, though the mapping is not exact.

Why do Sampling Assumptions Matter?

As outlined at the start of the paper, inductive inference is a central problem in
cognitive science, and has therefore been studied a great deal. What may be less obvious is
the critical importance played by sampling assumptions. Most work in this area has focused
on how inductive inferences are shaped by the pre-existing biases of the learner, and on the
mental representations that underpin these biases. However, induction is in large part a
process in which the learner’s beliefs are shaped by data. In order for that to happen, the
learner must rely on some (probably implicit) assumptions about the evidentiary value of
his or her observations. In other words, he or she needs to have some theory for how the
data were sampled, and some way of linking that theory to beliefs about the state of the
world. The “strong sampling” and “weak sampling” models are two examples of such a
theory, but the basic issue is more general.

To illustrate the generality of the issue, consider the dilemma faced by 17th century
European ornithologists trying to catalogue the birds of the world. To their knowledge,
nobody had ever observed a non-white swan. Should they have inferred that all swans are
white? This question, identified by Popper (1935/1990) while discussing David Hume’s
problem of induction, is a classic. Although the learner in this instance has a very large
number of observations of white swans, the obvious inference (that all swans are white)
is of course incorrect. As it turned out, European swans are systematically different to
Australian swans, and so the inference fails. A naive learner does not account for the
systematic spatial variation, and overestimates the informativeness of the observed data.
Indeed, the evidentiary value of observations are shaped by a great many factors. The
data might be very old (a new mutation might produce black swans), collected by someone
untrustworthy (medieval bestiaries do not provide reliable biological data), or copies of
one another (the same swan could be seen multiple times). Moreover, people are often
quite sensitive to these factors (Anderson & Milson, 1989; Anderson & Schooler, 1991;
Welsh & Navarro, 2007), altering their inferences based of their assumptions about the
informativeness and relevance of the data.

These issues are all sampling assumptions: they relate to the learner’s theory of how
the data are generated. Within the Bayesian framework, such issues are handled through
the likelihood function. To return to the specific issues discussed in the previous section, a
learner who makes a strong sampling assumption (Equation 3) is clearly relying on a very
different theory of the data than one who uses a weak sampling model (Equation 2), and
his or her beliefs and inductions change accordingly. In other words, what these equations
are saying that the informativeness of a particular observation changes depending on how it
was sampled. It is for this reason that the sampling assumptions play a key role in the spec-
ification of any Bayesian theory. That being said, these issues are by no means restricted
to Bayesian theories. Rather, all theories of learning are reliant on assumptions about the
nature of the observations. For instance, connectionist models (e.g., Hinton, McClelland, &
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Rumelhart, 1986) implement learning rules that describe how networks change in response
to feedback, with different learning rules embodying different assumptions about data. De-
cision heuristics (Gigerenzer & Goldstein, 1996) specify a learning method by describing
how to estimate “cue validities” and related quantities, with different estimation methods
producing different inferences (Lee, Chandrasena, & Navarro, 2002). In short, although our
approach to this problem is explicitly Bayesian, and covers only some of the issues at hand,
the underlying problem itself has much broader scope.

Conservative Learning in a Complicated World

The previous section illustrates the central role played by sampling assumptions in
guiding inductive inferences, and illustrates that the core issue is much more general than
the “strong versus weak” distinction. In particular, the focus on the evidentiary value of
data is critical. In the weak sampling model described previously, an observation that is
consistent with two hypotheses is assumed to convey no information about their relative
plausibility. In contrast, a strong sampling assumption means that the observation is highly
informative. However, in light of the issues raised in the last section (old data, untrustworthy
data, correlated data, and so on) it seems plausible to suspect that some people would adopt
a kind of intermediate position: when an observation is consistent with hypotheses h1 and
h2, such a learner will make some adjustment to their beliefs, but this adjustment will be
less extreme than the |h2|/|h1| scaling that Equation 3 implies. In fact, it has long been
recognized that people generally adapt their beliefs more slowly than the naive application
of Bayes’ theorem would imply, a phenomenon known as conservatism (Phillips & Edwards,
1966). Moreover, one of the main reasons why conservatism might be expected to occur is
that people are sensitive to the fact that real-life observations are correlated, corrupted and
so on (Navon, 1978).

To illustrate the implications of conservative learning, consider the problem faced by
a learner who encounters only positive examples of some category. If all category members
are equally likely to be observed, and all observations are generated independently from the
true category, then a strong sampling model is the correct assumption to make (Tenenbaum
& Griffiths, 2001a). However, few if any real life situations are this simple, so while a “naive”
learner would adopt a strong sampling model, a more skeptical learner would not. In the
most extreme case, our skeptical learner might decide that the sampling process is not
informative, and would and up with a weak sampling model as a consequence. What this
makes clear, however, is that strong and weak sampling are two ends of a continuum, since
it is perfectly sensible to suppose that the learner is not completely naive (not strong) but
not completely distrusting (not weak).

How might such a learner think? To motivate this, consider the problems associated
with learning how alcoholic a beer is. The first beer that the world provides to the learner
might be a Victoria Bitter (4.6% alc/vol), as is the second. The third beer might be
Tooheys New (4.6% alc/vol), and the fourth a Coopers Pale Ale (4.5% alc/vol). If (as per
strong sampling) the learner were to construe these as independent draws from a uniform
distribution over beers, he or she would have strong evidence in favor the hypothesis that
all beers have alcohol content between 4% and 5% by volume. However, a little thought
suggests that this inference is too strong. The problem is that sampling scheme here is
neither uniform nor independent, making it inappropriate to apply the strong sampling
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model in a straightforward fashion. In this example, the learner might reasonably conclude
that the second Victoria Bitter “token” is really just an example of the same “type” of beer,
and conveys no new evidence over the first. Moreover, since Tooheys New and Victoria
Bitter are both lagers, one might expect them to be a little more similar to one another
than two randomly chosen beers might be. Finally, since all three brands are Australian
beers and are often served in similar establishments, it is probable that none of them are
truly independent, and so a conservative learner might be unsurprised to discover that
Duvel (a Belgian beer) has 8.5% alc/vol. In short, while all four observations are legitimate
positive examples of the category “beer”, it would not be unreasonable to believe that only
one or two of them actually qualify as having been strongly sampled.

To formalize this intuition, we construct a sampling model in which there is some
probability that an observation is strongly sampled (drawn independently from the true
distribution) but with some probability the observation conveys no new information, and
may therefore be assumed to be weakly sampled. With this in mind, let θ denote the
probability that any given observation is strongly sampled, and correspondingly 1 − θ is
the probability that an observation is weakly sampled. Then, cleaning up the notation, the
learner has the model:

P (x, x ∈ h |h, θ) =

 (1− θ) 1
|X |

+ θ
1
|h|

if x ∈ h

0 otherwise,
(4)

where X is the set of all possible stimuli, and |X | counts the total number of possible items.
When θ = 0 this model is equivalent to weak sampling, and when θ = 1 it is equivalent to
strong sampling. For values of θ in between, the model behaves in accordance with the “beer
generation” idea discussed above: only some proportion θ of the observations are deemed
to be strongly sampled. As a consequence, this more general family of models smoothly
interpolates between strong and weak sampling.

What interpretation should we give to this more general family of models? One psy-
chologically plausible possibility is suggested by the beer sampling model discussed earlier:
some observations are deemed to be correlated, so much so that while he or she has ob-
served n “tokens” (observations), they correspond to only m “types” (genuine samples from
the distribution to be learned), where m = θn < n. This idea has some precedent in the
computational learning literature (e.g., Goldwater, Griffiths, & Johnson, 2006), and seems
very plausible in light of both the conservatism phenomenon (Phillips & Edwards, 1966)
and its rational explanation in terms of violations of independence (Navon, 1978). This
idea explains why the learner might want to adopt this class of models: if he or she thinks
that the world is messy, and generates observations in a correlated fashion rather than
independently from the true category distribution, then Equation 4 describes a sensible
psychological assumption for the learner to make. Like both strong and weak sampling,
it is an idealization: in any particular learning situation, the particular way in which the
world turns out to be “messy” will produce a slightly different family of sampling models.
Nevertheless, we suspect that the simple idea of reducing n strongly sampled observations
to some smaller value m = θn can provide a sensible first approximation to use in many
cases.

More generally, while the primary justification for the model is based on an theory
of psychological conservatism, it curious to note that Equation 4 has an interpretation as
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an example of a “James-Stein type” shrinkage estimator (see Hausser & Strimmer, 2009;
Schäfer & Strimmer, 2005) for the distribution that generates the data.3 The weak sampling
model acts as a low variance high bias estimator, whereas the strong sampling model is
high variance and low bias (see, e.g., Hastie, Tibshirani, & Friedman, 2001 for a statistical
introduction, and Gigerenzer & Brighton, 2009 for a psychological discussion). Our “mixed”
sampling model is based on the assumption that the learner aggregates these two. The
interesting point is that James-Stein type estimators have the ability to outperform either
of the two estimators from which they are constructed (Stein, 1956; James & Stein, 1961).
As such, the usefulness of mixed sampling model may extend across a quite broad range of
situations.

Testing Sampling Assumptions

The Bayesian theory of generalization was developed a decade ago (Tenenbaum, 1999;
Tenenbaum & Griffiths, 2001a), with the assumption of strong sampling playing a key role
in the extension to Shepard’s (1987) exponential law. The strong-weak distinction appears
in a different form within the theoretical literature on computational learning theory, with
some things being difficult to learn with a weak sampling model (Gold, 1967) but other
evidence suggesting that strong sampling methods are able to do so (Muggleton, 1997). Yet
to date, the psychological evidence for this theoretical principle is somewhat limited.

Previous work (Tenenbaum, 1999; Sanjana & Tenenbaum, 2003; Navarro & Per-
fors, 2010; Xu & Tenenbaum, 2007b, 2007a) provides some support to the notion, but the
evidence available tends to be restricted in various ways. The stimuli used tend to be
organized into a tree-structured hypothesis space Xu and Tenenbaum (2007b, 2007a) or
variation thereof (Sanjana & Tenenbaum, 2003), with only a few studies examining gener-
alization with respect to spatially organized stimuli (Tenenbaum, 1999) or less structured
representations (Navarro & Perfors, 2010). In some cases, the participants are explicitly
told that the stimuli are randomly sampled from the true concept (Tenenbaum, 1999), or
are given some other more subtle indication of which sampling model is appropriate (Xu
& Tenenbaum, 2007a). While none of these restrictions seem critical – and indeed tend to
reflect various different situations that exist in real life – it does highlight a lack of diversity
in the available evidence.

One respect in which the limited research is quite noticeable is that in all cases the data
presented are aggregated across participants. This raises the issue of individual differences
(Lee & Webb, 2005; Navarro, Griffiths, Steyvers, & Lee, 2006). It has been long known
(Estes, 1956) that this can induce very large distortions in the data. Do people tend to
make the same default assumptions about sampling, or is this something that varies across
individuals? If so, can the Bayesian generalization theory capture this variation? Indeed,
the reassurance that the theory holds for individual people is of particular importance in
this case, where the learner receives only positive instances of a category. In such “positive
only” learning scenarios there is an ongoing question about what it is theoretically possible
for the human learner to actually learn from the data, dating back to Gold’s (1967) theorem
regarding language acquisition. The distinction between strong sampling and weak sampling
matters in this regard: under weak sampling, positive data are not powerful enough for

3We thank Fermin Moscoso del Prado Martin for drawing our attention to this link.
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the learner to acquire some types of complex knowledge structures, whereas under strong
sampling a great deal more is learnable (see, e.g., Perfors, Tenenbaum, & Regier, 2006).
If it were to be the case that only some people apply strong sampling assumptions, then
it may be more difficult to use strong sampling as an explanation for phenomena (such as
language acquisition) that are genuinely universal across people.

Stimulus Generalization in Psychological Space

In this section we describe the Bayesian theory of generalization as it applies to stimuli
that vary along a single continuous dimension, and illustrate how inductive generalizations
change as a function of the sampling assumptions and the prior beliefs of the learner.

Learning from examples

Suppose that the learner has observed a single item x, that is known to possess some
property. Since stimuli vary along a continuous dimension, we follow the approach taken
by Shepard (1987) and Tenenbaum and Griffiths (2001a) and assumes that there exists a
true “consequential region” (denoted rt) over which the property is true. If the property of
interest is constrained to occupy a single connected region, then we may define the learner’s
hypothesis space to be R, the set of all such regions. For instance, the stimulus dimension
might be the latitude of a geographical location on planet Earth, and the property in
question could be whether the location lies within the tropics. In this scenario, the stimulus
dimension ranges from a latitude of −90◦ to a latitude of 90◦, and the consequential region
for the tropics corresponds to the range from −23.5◦ to 23.5◦. In general, consequential
regions need not correspond to a single interval: for instance, the temperate zone on Earth
covers two disconnected regions, the southern temperate zone from −66.5◦ to −23.5◦ and
the northern temperate zone from 23.5◦ to 66.5◦. As discussed by several authors (Shepard,
1987; Tenenbaum & Griffiths, 2001b; Navarro, 2006), the Bayesian generalization model can
be extended to handle these situations without conceptual difficulty, but for the purposes of
the current paper the simpler version is sufficient. The basic idea is shown on the left hand
side of Figure 1, which depicts 10 possible hypotheses that the learner might have about
how far the tropics extend.

When presented with this learning scenario, one natural goal for the learner is to
discover the identity of this unknown region. What information does he or she have to work
with? Notice that there are two distinct pieces of information inherent in this problem.
Firstly, the learner has observed the item x itself (and not some other possible item), which
may or may not be a useful clue. Secondly, the learner has discovered that this item x
possesses the property of interest: that is, he or she knows that x ∈ rt. Suppose now that the
learner hypothesizes that the correct region is r; that is, that rt = r. What is the probability
P (rt = r |x, x ∈ rt) that this hypothesis is correct, in light of the information presented to
the learner? We may calculate this probability by applying Bayes’ rule (Equation 1), which
gives

P (rt = r |x, x ∈ rt) = P (x, x ∈ rt | rt = r)P (rt = r)∫
R P (x, x ∈ rt | rt = r′)P (rt = r′) dr′ . (5)

The denominator in this expression is an integral rather than a sum, because the space of
possible regions is continuous rather than discrete. In the Appendix we present the solution
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Figure 1 . A schematic illustration of the tropics example, showing a collection of possible
hypotheses (left), a data set and novel query items (right), and showing how only some of
the hypotheses are consistent with the data (middle).

to all of the integrals relevant to this paper, but for the purposes of explaining the basic
ideas, these solutions are not important. As such, it is convenient to ignore the denominator
(since it is just a normalizing constant), and note that

P (rt = r |x, x ∈ rt) ∝ P (x, x ∈ rt | rt = r)P (rt = r). (6)

This makes clear that the learner’s degree of belief in r depends on two things. Firstly, it
depends on the extent to which he or she originally believed that r was the true region,
which is expressed by the prior probability P (rt = r). Secondly, it depends on the likelihood
P (x, x ∈ rt | rt = r), which describes probability that the learner would have observed x and
learned that x ∈ rt if the learner’s hypothesis were correct. We will discuss these two terms
in detail shortly, but notice that at a bare minimum the likelihood term P (x, x ∈ rt | rt = r)
is zero if the hypothesized region does not contain the item (i.e., if x /∈ r).

As noted by Tenenbaum and Griffiths (2001a), the theory extends to multiple ex-
amples in a very simple way. We now imagine that the learner has encountered n items
that possess the property, corresponding to the observations x = (x1, . . . , xn). In this situ-
ation, the learner knows that the items x have been generated, and also knows that these
items belong to the true consequential region, x ∈ rt. If we suppose that the items are
conditionally independent4 and apply Bayes’ rule, we obtain the expression

P (rt = r |x,x ∈ rt) ∝ P (x,x ∈ rt | rt = r)P (rt = r) (7)

=
(

n∏
i=1

P (xi, xi ∈ rt | rt = r)
)
P (rt = r). (8)

4In view of our discussion about correlated environments, this assumption may seem odd. However, it
is important to recognize that conditional independence is not inappropriate: part of the qualitative idea
behind the mixed sampling model is to use θ to express the dependencies among items. That is, with
probability θ the generation of observation x may be deemed to be formative, but is otherwise deemed to
convey no new information.
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Given the simplicity of this expression, multiple items may be handled easily. Moreover,
since it is constructed from the same two functions (the prior and the likelihood), there
is nothing conceptually different about the multiple item case. Again, noting that the
likelihood is zero for any region r that does not contain all of the training items x, one part
of the learning process is to eliminate all hypotheses that are inconsistent with the data. To
continue with the “tropics” example earlier, the learner might be told that Cairns (latitude
−16.9◦) and Singapore (latitude 1.3◦) lie in the tropics. On the basis of this knowledge,
many of the originally possible regions are eliminated, as illustrated on the right hand side
of Figure 1.

Making predictions

When solving an inductive generalization problem, the learner’s task is slightly more
complex. Rather than needing to infer the true consequential region associated with the
property, the learner needs to determine if some novel item y also shares the property. In the
tropics example, this might correspond to a situation in which the learner has been told that
Cairns and Singapore lie in the tropics, and is asked to guess if Brisbane (latitude −27.4◦)
also lies in the tropics. Formally, the problem at hand is to infer the probability that y ∈ rt
given that the learner has observed x and knows that x ∈ rt. Clearly, if the identity of the
true region is known to the learner then this problem becomes trivial. However, the learner
does not have this knowledge. Instead, what the learner has is a set of beliefs about the
plausibility of different regions, as captured by P (rt = r |x,x ∈ rt) as discussed earlier. If
the learner weights each hypothesis according to its probability of being correct, then he or
she can infer that the probability that the new item also possesses the property, as follows:

P (y ∈ rt |x,x ∈ rt) =
∫
R
P (y ∈ rt | rt = r)P (rt = r |x,x ∈ rt) dr. (9)

In this expression the P (y ∈ rt | rt = r) term is very simple: it is just the “probability” that
y falls inside some known region r. Therefore, it equals 1 if y is inside this region and 0 if
it is not. Not surprisingly then, only those regions that include y make any contribution to
the integral in Equation 9, and so we can simplify this expression by restricting the domain
of the integration to Ry, the set of regions that contain y. Thus we may write

P (y ∈ rt |x,x ∈ rt) =
∫
Ry

P (rt = r |x,x ∈ rt) dr, (10)

As noted earlier, the solution to this integral is presented in the Appendix for all cases
relevant to this paper. However, in order to understand the behavior of the model, it suffices
to note that all this integral does is “add up” the total degree of belief associated with those
regions that include y. To return again to our tropics learning example in Figure 1, there
are five hypotheses that are consistent with the training data (Singapore and Cairns). Of
those five hypotheses, four also contain the query item (Brisbane). Therefore, if the learner
treats all five of these hypotheses as equally likely, he or she would rate the probability of
Brisbane being tropical at 80%. Of course, in the actual model the learner’s hypothesis
space consists of all possible regions, not just the ten shown in the Figure, but the basic
principle is the same: the learner generalizes using only those hypotheses that are consistent
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with the data. The more important issue is whether the learner would really treat all of
the data-consistent hypotheses as equally plausible. To answer that question, we must now
look at the priors and the likelihoods in detail.

Priors and likelihoods

To complete the model, we need to specify P (rt = r), the learner’s prior degree of
belief in region r, and the likelihood function P (x, x ∈ rt | rt = r). As discussed earlier,
the family of likelihood functions that we consider in this paper are those that correspond
to the “mixed sampling” model (Equation 4). In order to do so we may (without loss of
generality) assume that the range X over which stimuli can vary is the unit interval, [0, 1].
In the tropics example, for instance, we can do this by dividing the latitude by 180 and
then adding 0.5. In these new co-ordinates, the tropics correspond to the region that runs
from 0.37 to 0.63. Having made this assumption, the mixed sampling likelihood functions
are given by

P (x, x ∈ rt | rt = r, θ) =

 (1− θ) + θ
1
|r|

if x ∈ r

0 otherwise
. (11)

where |r| denotes the size of the region, and as discussed previously θ = 0 yields the weak
sampling model and θ = 1 is the strong sampling model. In these normalized co-ordinates,
therefore, the size of the tropics is 0.63− 0.37 = 0.26.

What degree of prior belief should the learner place in the hypothesis that region r is
the correct one? One natural possibility is the uniform prior, P (rt = r) ∝ 1, in which the
learner treats every possibility as equally likely. However, this is not the only possibility
that the learner might consider. Consider the region r that covers the interval [l, u]. The
size of this region is given by |r| = u − l, and the location of this region is the center
c = (u+ 1)/2. In keeping with Shepard (1987) we assume that it is only the size of a region
that matters, not its location. With this in mind, one natural choice of prior is the simple
one-parameter Beta(1, φ) model, in which

P (rt = r) ∝ |r|φ−1. (12)

Although simple, this prior is quite principled. It has the same structure as the likelihood
function (i.e., size raised to some power), which means that φ can be interpreted as pseudo-
data. That is, increasing φ by one has exactly the same effect on the generalization function
as decreasing the sample size by one. In other words, if the learner’s pre-existing knowledge
can be described “as if” it corresponded to a set of fictitious previous observations, then
the prior distribution should take this form. The result is a family of priors in which φ = 1
corresponds to a uniform distribution over possible regions, whereas φ < 1 expresses a prior
assumption that the region is small, and φ > 1 corresponds to a prior belief that the region
extends over a larger range. To illustrate this idea, Figure 2 shows the prior distribution
that would be involved in the tropics example, if the 10 hypotheses shown in Figure 1 were
in fact the entire hypothesis space. When φ = 1 (middle panel), all regions are treated as
equally plausible a priori. A prior that is biased towards small regions (φ = 0.5) is shown
in the left panel, while the right panel depicts a bias towards larger regions (φ = 2).



13

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

p
ri
o
r 

p
ro

b
a
b
ili

ty

prior distribution, φ = 0.5

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

p
ri
o
r 

p
ro

b
a
b
ili

ty

prior distribution, φ = 1

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

p
ri
o
r 

p
ro

b
a
b
ili

ty

prior distribution, φ = 2

Figure 2 . The tropics prior. Lower panels show 10 different hypotheses the learner might
have regarding how far the tropics extend. The top panels plot the prior degree of belief
that a learner might have, depending on the value of φ.
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Figure 3 . The tropics posterior. Lower panels show 5 hypotheses that are consistent with
the observed data (i.e., the fact that Singapore and Cairns are both tropical), while the
upper panels show the posterior degree of belief that the learner might have, depending
on the sampling assumptions θ (assuming that φ = 1). The black bars depict hypotheses
that would predict Brisbane to be tropical as well, while the grey bars correspond to the
hypothesis that predicts Brisbane not to be tropical.
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Now that we have both the prior and the likelihood specified, the influence of the
sampling assumptions θ can be made explicit. Figure 3 plots three posterior distribution
for the tropics problem, where the prior distribution is assumed to be uniform (as per
the middle panel of Figure 2), using a weak sampling model (θ = 0), a strong sampling
model (θ = 1) and an intermediate model (θ = .33). Note that the pattern of falsification
is the same in all three cases: regardless of the value of θ, hypotheses 1, 2, 5, 6 and 10
are all inconsistent with the data, because the corresponding regions do not contain both
Singapore and Cairns. Thus the posterior probability for these regions is zero. In weak
sampling (left panel), this is the only change from the prior distribution, and so the five
remaining hypotheses are equally weighted. Since the only one of the remaining hypotheses
not to contain Brisbane is hypothesis 3 (shown in grey), in this case the learner would
say that there is an 80% chance that Brisbane lies in the tropics. However, if θ > 0 then
the likelihood favors the smallest regions that are consistent with the data (i.e., contain
Singapore and Cairns). Thus, the likelihood will always favor hypothesis 8 most strongly,
followed by hypotheses 3, 7, 4 and 9 in that order. When θ is near 1, this effect is very
strong (right panel of Figure 3) whereas for θ close to 0 this effect is much smaller. As a
result, when θ = .33 the learner’s estimate of the probability that Brisbane is tropical falls
to 77%, which drops to 75% when θ = 1.

Constructing a Generalization Gradient

Up to this point, the tropics example that we have used to illustrate model behav-
ior has relied on an ad hoc hypothesis space consisting of only 10 possible consequential
regions. Moreover, we have only examined the model predictions for a single query item
(i.e., Brisbane, latitude −24.4◦). However, in order to understand the overall behavior of
the model, we need to remove both of these restrictions. To start with, suppose we ex-
panded the hypothesis space to include all regions where the edge points are a member of
the set .05, .15, . . . , .85, .95 (that is, a very crude discrete approximation to R). Using this
expanded hypothesis space, we can then calculate the posterior distribution over possible
regions P (rt = r |x,x ∈ rt) for different choices of the two parameters θ and φ, as well as
the generalization probability P (y ∈ rt |x,x ∈ rt) for all possible query items y.

In the simplest case, suppose the learner has a uniform prior over regions φ = 1
and applies a weak sampling model θ = 0. This case is illustrated in the left panels of
Figure 4. The lower part of the plot draws all of those regions that are consistent with
the two observations (Singapore and Cairns). Since all of these regions were equally likely
in the prior, and the weak sampling likelihood function only acts to falsify regions that do
not contain the data, all of these regions remain equally likely in the posterior (illustrated
schematically by the fact that all of the lines are of the same thickness). In the top part of
the panel, we plot the generalization probability P (y ∈ rt |x,x ∈ rt) for all possible latitudes
of the query item y. Since all of the regions in the lower panel are weighted equally, for any
given value of y this probability is just a count of the proportion of non-falsified regions
that contain the query item.

When we use other parameter values, it is no longer the case that all regions are
equally likely. For instance, suppose the learner switched from a weak sampling model to a
strong sampling model, by increasing θ from 0 to 1. It is now the case that the likelihood
function strongly favors the smallest regions that contain both Singapore and Cairns. This
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situation is shown in the middle panel of Figure 4. The lower part of the plot schematically
illustrates the effect of the likelihood on the posterior distribution over regions: smaller
regions are more likely, and are thus drawn with thicker lines. The upper panel shows what
effect this has on the generalization gradient: it “tightens” around the data, because the
narrowest regions are preferred by the learner.

The right hand panel of Figure 4 shows what influence the prior has, by raising φ
from 1 to 5. By choosing a prior with φ = 5, the learner has a prior bias to believe that
the region is large (i.e., that the tropics covers a very wide band of latitudes). Even though
the learner has a weak sampling likelihood function (i.e., θ = 0) the posterior distribution
in the lower panel is quite uneven, as a result of the learner’s prior biases. In this case,
because the prior bias was to favor large regions, the effect of the generalization gradient
is the opposite of the effect we observed in the middle panel: the generalization gradient
spreads out, and in fact becomes convex.

One critical implication of this phenomenon should be made explicit: the effects of φ
and θ are very similar if we consider only a single generalization gradient. That is, raising θ
has the same effect as reducing φ. Indeed, this is a general property of Bayesian models. In
order to disentangle the influence of the learner’s prior beliefs (φ) from their assumptions
about data (θ) it is necessary to look at how the overall pattern of generalizations changes
across multiple generalization gradients.

Obviously, the stepped generalization functions shown in Figure 4 are not psycholog-
ically plausible. This lack of smoothness is an artifact of limiting the hypothesis space to a
discrete approximation. If we expand the hypothesis space to consist of all possible regions,
the problem becomes continuous, as do the corresponding generalization gradients. In the
Appendix, we present solutions to the integrals involved in the continuous case, allowing
us to directly calculate smooth generalization gradients rather than relying on numerical
approximations.

Generalization Gradients in the Full Model

Having illustrated how the model predictions are constructed, we now turn to a
discussion of what kinds of generalization patterns can be produced by varying the prior
(via φ) and the likelihood (via θ). Of the two parameters, the one in which we are interested
is θ, but it is important to show how to disambiguate the two. To do this, consider what
happens to the generalization gradients when the learner makes three observations, but
sees them one at a time. For simplicity, assume that φ = 1 so the learner treats all regions
as equally plausible a priori. The generalizations that are possible in this situation are
illustrated in Figure 5. In the weak sampling case, the generalization gradients are linear
and do not tighten.5 Critically, notice that for any θ > 0 the generalization gradients get
tighter as more data are observed (from left to right). As will become clear when we discuss
the priors, this is the critical prediction – the nonlinear shapes of the gradients in the lower
panels can easily be mimicked by weak sampling if we choose the priors in the right way,
but the tightening from left to right cannot. This is illustrated in Figure 6, which shows
what happens when we vary φ (while keeping θ fixed at 0). The prior cannot influence the

5The linearity may seem surprising, since Shepard’s (1987) analysis produced exponential gradients: the
difference is partly due to the priors and partly due to the restriction to finite range.
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Figure 4 . Construction of the generalization gradients. The lower three panels show a
collection of hypotheses that are consistent with the training data in the tropics problem
(i.e., Cairns and Singapore), where the width of each line illustrates the degree of belief that
the learner has in that hypothesis. The generalization gradients at the top are constructed
by calculating the probability of being tropical for all possible query items, as a function of
their latitude. The differences between the plots arise due to differences in sampling models
and priors.

manner in which generalizations change as a function of data. It is this critical regularity
that we seek to investigate experimentally.

Experiment One

The question we want to investigate in this experiment is the extent to which peo-
ple change their generalizations as a function of the number of observations they make.
According to the weak sampling hypothesis (as per Shepard, 1987; Heit, 1998; Kemp &
Tenenbaum, 2009), the generalization gradients should not tighten purely because more
data are available. In contrast, the strong sampling hypothesis (as per Tenenbaum & Grif-
fiths, 2001a; Sanjana & Tenenbaum, 2003) implies that the generalization gradients should
narrow as data arrive, even if the new observations fall within the same range as the old
ones.

Method

Participants. Participants were twenty-two undergraduates (16 female, 6 male)
from the University of Adelaide, who were given a $10 book voucher for their participation.
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Intermediate sampling (θ = .33)

Strong sampling (θ = 1)

Query item Query item

Figure 5 . The effect of varying the sampling model θ, for a situation in which the learner
places uniform priors over all possible connected regions that contain the training items.
The top panels show the weak sampling case (θ = 0), with the three panels showing the
situation when the learner has observed one, two and three training items respectively. Note
that in the weak sampling case, the generalization gradients do not tighten. In contrast, the
middle panel shows an intermediate case (θ = .33) while the lower panel shows the strong
sampling case (θ = 1); in both cases the gradients get steeper from left to right. Note also
that including some strong sampling in the mixture has a clear effect, in the sense that the
curves for θ = .33 are more similar to those for θ = 1 than they are for θ = 0.
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Figure 6 . The effect of varying φ, when the sampling model is weak (θ = 0) for a case
involving three training items (black dots). The middle row shows the case where the prior
is uniform (φ = 1), and is thus identical to the top row in Figure 5. The top row shows
a situation where the learner has a prior bias to expect the region to be small (φ = .05),
yielding convex gradients that look very similar to those observed in the lower panels of
Figure 5. The bottom row, on the other hand, shows what happens when the learner has
a prior bias to believe that the region will be large: the generalization gradients become
concave.
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Figure 7 . The experimental design. Each panel corresponds to one of the three scenarios,
and shows the three different sets of stimuli known to possess the property. The tick marks
are located at each of the test points. See main text for details.

Materials & Procedure. Participants were asked about three different induction
problems, presented in a random order via computer. All problems involved stimuli that
varied along one continuous dimension. One problem involved the temperatures at which
a bacterium can survive, another asked about the range of soil acidity levels that produce
a particular colored flower, and the third related to the times at which a nocturnal animal
might forage. The cover story then explained that a small number of “training” observations
were available – in the bacterial scenario, for instance, it would indicate temperatures at
which the bacterium was known to survive – and asked participants to make guesses about
whether or not the property generalized to different stimulus values (the “query” items).
The cover stories are provided in the Appendix.

To minimize any differences between the psychological representation of the stimuli
and the intended one, participants were shown a visual representation of the data, which
marked the locations of training items with a black dot, and the query item was shown using
a red question mark. The cover stories were constructed to imply that the to-be-inferred
property did not hold for beyond the range shown on screen. Responses were obtained by
allowing people to position a slider bar using the mouse, with response values ranging from
0% probability to 100% probability. Once the participant was satisfied with the positioning
of the slider bar, they clicked a button to move to the next question. For every set of
training data, we presented 24 query items, spread evenly across the range of possible items
and presented in a random order.

Since it is impossible to infer the sampling model from a single generalization gradi-
ent, we measured three generalization gradients for each problem, as illustrated in Figure 7.
Initially, participants were asked to make generalizations from a small number of observa-
tions. These were then supplemented with additional observations, and people were asked
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Figure 8 . All 216 judgments made by participant 14 (dark solid lines) and participant 2
(light dashed lines). The gradients are all sensible, but the participants clearly differ from
one another.

to generalize from this larger sample. Finally, the data set was expanded a third time
to allow us to measure a third generalization gradient. In effect, we present people with
three samples—collectively referred to as a “data structure”—and obtain the corresponding
generalization gradients. The assignment of cover stories (bacterial, soil, foraging) to data
structures was fixed rather than randomized, as illustrated in Figure 7 (we address this in
experiment two). For example, the top panel shows the data structure associated with the
bacterial cover story. Each of the three rows corresponds to the three samples: three known
observations were initially given, which was then expanded to five data points, and then
finally to a sample of ten observations. In total, each participant made 216 judgments (3
scenarios × 3 samples × 24 queries).

Basic Results

Figure 8 plots all 216 judgments made by two of the participants. In both cases the
judgments appear sensible, but it is clear that the generalization gradients are quite different
from one another. Indeed, inspection of the raw data across all 22 participants made clear
that individual differences are the norm rather than the exception. With this in mind, in
the model-based analyses we present later in this section we took care not to average data
across participants. Moreover, later in the paper we examine the individual-level data in
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some detail. However, before modeling the data, we present some more basic analyses.
As discussed earlier, the basic effect that we are looking for is the “gradient tightening”

effect shown in Figure 5. That is, do people narrow their generalization gradients as sample
size increases? A simple way to test this proposition is to note that the experimental design
is such that there are multiple occasions where more data are added to the sample, but at
least one of the two edge points remains unchanged (Figure 7). For instance, one of the
seven cases corresponds to the transition from the first to second sample in the bacterial
scenario: on the left hand side, the edge point does not change. To a first approximation,
it is reasonable to assume that if θ > 0, the generalization probabilities should decrease for
the query items that lie beyond this edge.6 In total, there are seven situations in which
the edge point does not change, yielding a total of 64 pairs of queries. Since there are 11
query items to the left of the leftmost training example in this instance, this contributes
11 of the 64 query pairs that we can consider, and thus a total of 22 × 64 = 1408 pairs
of responses. For each such pair of queries, we are interested in the difference between
generalization probabilities reported by each participant, since this provides a measure of
the extent of “gradient tightening.” On average, people showed a small but significant
amount of gradient tightening: the generalization probabilities are lower on average when
the sample size is larger (t1407 = −4.98, p < .001). Individually, the trend is the correct
direction for 51 of the 64 query pairs, and for 17 of the 22 participants. However, notice
that this a small effect: the raw judgments vary from a probability of 0% to 100%, but the
average change corresponds to a decrease in generalization probability of only 2.3% from
one case to the next.

Model-Based Analyses

The simplified analysis in the previous section provides some evidence that the “gra-
dient tightening” effect is present in these data, but the effect is quite weak, and leaves
a great many questions unanswered. Is the tightening effect actually consistent with the
strong sampling model proposed by Tenenbaum and Griffiths (2001a), or indeed with any
of the sampling models discussed in this paper? Is the effect present for all scenarios, or
only one or two? Do people tend to rely on the same sampling assumptions, or do people
differ in this respect? In order to answer these questions, we need to fit the model to data
explicitly. In this section we present an analysis that discusses two key questions: (1) the
extent to which the Bayesian model successfully fits the data, and (2) what assumptions
about θ are implied by these data. However, although we are careful not to average data
across participants because of the individual differences that exist, we do not discuss these
differences in any detail in this section: we return to this topic later in the paper.

The first question of interest relates to the adequacy of the generalization model. In
order to address this question, we estimated the best fitting values of θ and φ separately for
all 22 participants and all 3 scenarios, yielding a total of 66 parameter estimates (details are
provided in the Appendix). We then measured the correlation between human responses
and the model predictions at these best-fitting parameters, where the correlation is taken

6This is not strictly correct, insofar as the behavior of a strong sampling model can sometimes depend
on what happens to both of the edge points, not just the nearest one. Even so, the results of this simple
analysis are in accordance with the results of the more detailed model fitting presented later in the paper.
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Figure 9 . Correlations between human data and model predictions in experiment 1, dis-
played for all 22 participants and all 3 scenarios. After making degrees-of-freedom correc-
tions for the two extra free parameters (θ and φ), there are 4 non-significant correlations
among the 66 cases, involving participants 5 (scenarios 2 and 3) 8 (scenario 3) and 16 (sce-
nario 16). These four cases are plotted as having a correlation of zero. Of the remaining 62
significant correlations, 61 are significant at the .001 level and 1 is significant at the .01 level.
Grey bars plot the thresholds used to classify model performance as “good”, “moderate” or
“poor”.

over the 72 judgments (24 queries × 3 cases) that each participant made in each scenario.
Note that this set up means that the model needs to predict every single judgment made by
every participant: no aggregation of data at any level is involved. The resulting correlations
are plotted in Figure 9. After making a degrees of freedom adjustment to account for the
two extra free parameters (i.e., θ and φ), almost all correlations (62 of 66) are significant.
More importantly, the correlations are quite strong, especially in view of the fine grain at
which we are modeling the data: the median correlation is 0.77, with an interquartile range
of [.65, .85]. Overall, it is clear that the model is able to describe the data well.

Given that the model fits appear to be quite good, it is natural to ask what values of
θ are involved. As the histograms in Figure 10 illustrate, there is evidence for both strong
sampling and weak sampling in this task. However, it is also there are clear differences
between people and between scenarios. While the distributions are unimodal and biased
towards weak sampling (small θ) in two of the three scenarios, the distribution of estimates
for the foraging scenario is rather bimodal.

Discussion

The overall pattern of results to experiment one highlights several points. Firstly,
there is quite strong evidence that the Bayesian generalization model is able to describe
accurately the behavior of participants at a quite fine-grained level of analysis (prediction
of every judgment in the experiment). However, it is important to take note of the technical
literature that discusses how to measure safely the adequacy of a model’s performance,
addressing issues such as model complexity (e.g. I. J. Myung, 2000; Pitt, Myung, & Zhang,
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Figure 10 . Distributions over θ observed in experiment 1. Each panel plots the distribution
of best estimates (grey histograms) across the 20 participants, with each panel corresponding
to one of the three scenarios. The black lines plot essentially the same analysis, but using
the full posterior distributions over θ rather than just the best estimate for each participant.
Reassuringly, the two versions of the analysis are in close agreement.

2002; J. I. Myung, Navarro, & Pitt, 2006), individual differences (e.g. Lee & Webb, 2005;
Navarro et al., 2006) and contaminant processes (e.g. Huber, 1981; Ratcliff & Tuerlinckx,
2002; Zeigenfuse & Lee, 2010). In fact, although we glossed over the details, our analysis
does in fact accommodate all of these topics: the Appendix provides a discussion of how
this was done.

Secondly, the data are quite informative as regards the default assumptions that
people make about how observations are generated (at least in some contexts). Notice that
the scenario descriptions did not explicitly state how the data were generated: participants
were expected to supply the missing “sampling” assumption on their own. That said, there
is a sense in which the data themselves suggest a strong sampling model, since participants
only ever observed positive examples of a category. If people relied solely on this as a cue,
then we would expect a bias towards larger values of θ. Despite this, the reverse is true: on
the whole, smaller values of θ tended to predominate.

Thirdly, the pattern of variation in the estimated θ values between scenarios is in-
teresting. When the scenarios were originally designed we did not anticipate finding any
differences between them: it was assumed that these differences would be presentational
gloss and no more. Nevertheless, what we in fact observed is a relatively substantial dif-
ference in the distributions over θ. People did seem to have a strong bias towards weak
sampling in two of the scenarios, and a weak bias to prefer strong sampling in the third.

This third point deserves further investigation. Specifically, the fact that we found
differences across the scenarios raises additional questions regarding the origin of these
differences. In particular, we note that the “foraging” scenario (which induced larger θ
values than the other two) differed from the other two problems in two respects. Firstly,
as illustrated in Figure 7, the changes in sample size involves an increase from 1 to 3 data
points, and from 3 to 5 data points. In contrast, while the other two scenarios also have a
jump from 3 to 5, the jump from 5 to 10 data points involves a smaller proportional increase
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(doubling) than the jump from 1 to 3 (tripling). One possible explanation for the use of
strong sampling in this situation is that the ratios in the “1:3:5” structure are larger than
in the “3:5:10” case, which (a) makes it easier for us to detect an effect, and (b) may make
the sampling regime more salient to people. More generally, the data structures involved in
the three cases are noticeably different to one another, suggesting the possibility that this
is the source of the difference.

An alternative explanation involves the cover stories themselves. In particular, the
bacterial temperature and soil pH scenarios both suggested an element of “experimental
control”, whereas the bandicoot foraging scenario did not. Experimental control over the
sampling locations means that the absence of data in other locations is uninformative.
That is, if an experimenter chooses the locations at which observations are to made, then
these locations clearly are not sampled from the true hypothesis. Thus for the purposes of
generalization it implies weak sampling. Accordingly, the effect may be due to the cover
story and not the data structure. In essence, the cover stories may have subtly given
participants instructions as to which sampling model is most plausible. Given that we have
multiple hypotheses for the origin of the effect, the next section describes an experiment
that disambiguates between the two.

Experiment Two

The goals for experiment two were threefold. Firstly, we aimed to replicate the effects
from experiment one using a new set of cover stories. Secondly, we aimed to disambiguate
between the “different data structure” explanation from the “implicit instruction” expla-
nation for the scenario differences. Finally, we altered methodological aspects the task
slightly, to check that the results are robust to these manipulations. Specifically, queries
were phrased as confidence judgments rather than probability estimates, and responses
given on a Likert scale rather than by positioning a continuous slider bar.

Method

Participants. Twenty participants (7 male, 13 female, aged 18-36) were recruited
from the general university community. Since the cover story manipulation relied on par-
ticipants’ reading the materials carefully and understanding the nuances, all participants
were fluent English speakers, and most were graduate students. All were naive to the goals
of the study, though one was familiar with Bayesian generalization models.

Materials & Procedure. The experiment presented people with a cover story in
which they were asked to imagine themselves as an explorer collecting samples of tropical
plants and animals, and asked them to make inferences about the different types of foods
encountered on the journey. There were three scenarios, relating to “bobo fruit”, “walking
birds” and “pikki-pikki leaves”. After presenting people with introductory text explaining
the experiment, text appeared on screen introducing one of the three scenarios.

Participants were then shown a number of stimuli and asked to make generalizations,
under an implicit “strong sampling” or implicit “weak sampling” regime. For instance, if the
scenario was bobo fruit and the sampling regime was strong, the text indicated that a local
guide gives them delicious fruit to eat. This is presumably a strong sampling situation,
since a helpful guide is not going to choose bad-tasting fruit as an example of the local
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Figure 11 . Correlations between human data and model predictions in experiment 1, dis-
played for all 22 participants and all 3 data structures. All 60 correlations are significant
at the .001 level, even after making degrees-of-freedom corrections for the two extra free
parameters (θ and φ). Grey bars plot the thresholds used to classify model performance as
“good”, “moderate” or “poor”.

cuisine. In contrast, under a weak sampling regime the text implied that the participant
had collected the fruit themselves, more or less at random.

Participants responded using the keyboard, indicating their confidence on a nine-point
Likert scale (1 = very low confidence and 9 = very high confidence). The locations of the
training data and the generalization questions were identical to those used in experiment
1. Each participant saw all three data structures (i.e., all three panels in Figure 7), and
all three cover stories (bobo fruit, walking bird, pikki-pikki leaves). The assignment of
cover story to data structure was randomized, and the data structures were presented in a
randomized order. Participants either saw all three scenarios in the strong sampling form,
or all three in weak sampling form. Twelve participants saw the weak sampling version and
eight saw the strong sampling version.

In order to make the cover story feel more engaging to participants, the actual task
was accompanied by thematically-appropriate background music, various props (including
pith helmets among other things) and the onscreen display had images of cartoon tropical
trees to add to the atmosphere. Qualitative feedback from participants did suggest that
they found the task both engaging and enjoyable, and indicated that they did spend some
time thinking about the scenarios.

Basic Results

The analysis for experiment two proceeds in the same fashion as for experiment
one. As before, we examine the 64 simple test cases to see whether the generalization
gradients tighten due to sample size. If we translate the Likert scale responses to probability
judgments in the obvious way (i.e., treating 1 as 0%, 9 as 100%, and interpolating linearly
for all other values) then what we observe in the data corresponds to an average decrease in
generalization probabilities of 3.0%. Once again, this is significant (t1299 = −6.5, p < .001)
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Figure 12 . Distributions over θ observed in experiment 2. Each panel plots the distribution
of best estimates (grey histograms) across the 20 participants, with each panel corresponding
to one of the three data structures. (Black lines plot essentially the same analysis, but using
the full posterior distributions over θ rather than just the best estimate for each participant).

but weak effect, of a similar magnitude to the 2.3% decrease found in experiment one.

Model-Based Analyses

As with experiment one, we found the best-fitting values of θ and φ for each partici-
pant and each scenario. The correlations between model predictions and human responses
were somewhat higher in experiment two. As shown in Figure 11, all 60 correlations were
significant, with a median of .90 and interquartile range of [.83, .94]. Overall, the model
performance is at least moderately good in all cases, and is usually very good.

The main difference between experiment one and experiment two is that the cover
story, data structure and the sampling scheme implied by the cover story were all varied
independently. After checking that (as expected) there were no effects of the cover story
itself (i.e., no differences between bobo fruits, walking birds and pikki-pikki leaves) and no
interaction effects, we ran a 3 × 2 ANOVA with main effect terms for data structure and
sampling scheme (weak vs strong) implied by the cover story, using the best-fitting value
of θ as the dependent variable. The results suggest that the data structure influenced the
choice of θ (F2,52 = 2.98, p = .06), but that people did not make adjustments to θ as a
result of the different sampling schemes implied by the cover story (F1,52 = 0.004, p = .95).

Discussion

Overall, the results from experiment two replicate those from experiment one, and
suggest that the differences in θ across conditions are largely due to the data structure
and not to an implicit instruction buried in the cover story. Consistent with our original
intuition, the cover stories in these experiments are too “generic” to induce strong differences
in people’s sampling assumptions.

A question that these results raise is why there was no effect of cover story, especially
in light of the results of Xu and Tenenbaum (2007a). One possibility might be that the
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participants simply did not read the cover story closely, and hence did not take the implied
sampling scheme into account. This seems rather unlikely, since the participants were
explicitly told to pay close attention to the story. This is no guarantee that they did, but
most participants did spend some time reading the stories. More plausibly, the manipulation
may simply have been too subtle: people may not have given a great deal of thought to
the implied sampling assumptions, and made no accommodation of them as a result. This
suggests that a more overt manipulation of actual sampling procedures (such as the one
used by Xu and Tenenbaum (2007a)) is likely to have an effect, but subtle differences in
cover story may not. In the meantime, it seems that it is the data structure that is the
origin of the effect. One possible reason for this might be that people are learning about
the sampling model itself as the experiment progresses, and that the 1:3:5 structure induces
a different amount of learning to the 3:5:10 scenarios. Future research might address this
possibility.

The Sampling Assumptions of Individuals

Between the two experiments there are a total of 126 posterior distributions over θ
(42 participants × 3 scenarios each). In the analyses presented up to this point we have
attempted to summarize these individual distributions in terms of the marginal distributions
in Figures 10 and 12. However, the aggregate distributions do not tell the whole story.

Firstly, a focus on the aggregate distributions and goodness of fit statistics tends to
obscure the actual behavior of people and the model. For instance, consider the comparison
between the data from participants 2 and 15 in the bacterial temperatures scenario from
experiment 1, shown in Figure 13. In the first panel, the generalization gradients are quite
similar, because the differences in priors (φ = 1.03 and φ = 1.71 respectively) are almost
perfectly balanced by the differences in sampling assumptions (θ = .02 and θ = .47) when
the learner has seen only three observations. However, as more data are observed, the two
people diverge in their predictions, because the differences in the likelihood functions comes
to dominate their beliefs. Analogous examples can be found in experiment 2.

The opposite effect can be seen by comparing participants 10 and 19 on scenario 3 in
experiment 1. These two people have different priors (φ = 1.79 and φ = 5.77 respectively)
but the same likelihood (best fitting value is θ = 1 in both cases). When only a single
datum is observed (left panels) these participants behave in quite different ways, but these
differences begin to disappear as more data arrive (right panels). As is generally the case
with Bayesian models, the data “swamp” the prior. That is, in the previous comparison
(Figure 13), participants made different assumptions about sampling, and so grew more
dissimilar as the sample size increased. However, in this second comparison (Figure 14),
participants agree about how data are produced: as a consequence, their prior differences
are erased as the sample size increases from left to right.

The second thing that is missing from the earlier analyses is a detailed examination
of the posterior distributions over θ for each participant. In analyses to this point we
have focused on the best fitting values of θ, giving little consideration to the full posterior
distribution. Nevertheless, for each participant and each scenario we have 72 judgments
available, so the analysis is worth doing. We used standard Markov chain Monte Carlo
techniques (MCMC; Gilks, Richardson, & Spiegelhalter, 1996) to estimate a complete
posterior distribution over θ for every participant and every scenario (assuming a uniform
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Figure 13 . A comparison between partipants 2 (top) and 15 (bottom) on scenario 1 (bacte-
rial temperature), as the sample size is increased (from left to right). The solid black lines
are the theoretical generalization gradients, and white circles denote the actual responses
given. Black circles show the observations given to the participants. Parameter estimates
are θ = .02 and φ = 1.03 for participant 2, and θ = .47 and φ = 1.71 for participant 15.

prior). Specifically, we employ a Metropolis sampler with Gaussian proposal distribution,
with burn in of 1000 iterations, and the distributions are estimated using 5000 samples
drawn at a lag of 10 iterations between successive samples.

For experiment one, Figure 15 plots each of the 66 posterior distributions over θ
separately. As is clear from inspection, the apparent bimodality involved in the foraging
scenario is an artifact of aggregating over participants. All of the individual distributions
over θ are unimodal, but they are centered on different values. For both the bacterial and soil
scenarios, most people either adopted a weak sampling model, or else used a mixed sampling
model centered on a fairly modest value of θ. For the foraging scenario, however, larger
values of θ dominate, with only a few participants adopting weak sampling assumptions.
The corresponding plots for experiment two are shown in Figure 16, and shows a similar
pattern.

General Discussion

The tendency to observe modest but non-zero values of θ in the experiments is strik-
ingly similar to the phenomenon of conservatism in decision-making: people’s belief revision
tends to be slower than the rate predicted by simple Bayesian models (e.g., Phillips & Ed-
wards, 1966). In the experiments reported here, there is a sense in which θ = 1 is the
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Figure 14 . Comparing two people with different priors and the same likelihood. Data are
from participants 10 (top) and 19 (bottom), for the foraging scenario. For both participants
the most likely sampling model was a purely strong account, with θ = 1, but the best fitting
value of φ differed. Participant 10 uses a prior that has very little by way of bias (φ = 1.79)
whereas participant 19 has a quite strong prior bias to expect the concept to have fairly
broad extension (φ = 5.77). The key thing to note is that the participants have very
different generalization profiles when only a single datum is observed (left panels), but
these differences begin to disappear as more data arrive (right panels).

“correct” sampling model to use, since the experimental design was such that all observed
data points were constrained to lie inside the true consequential region r. Nevertheless,
although some participants show clear evidence of having done so, most are at least a little
conservative (θ < 1). Indeed, some participants do not adjust their generalization gradients
at all (θ = 0), appearing to be insensitive to the effects of increasing the sample size (as per
Tversky & Kahneman, 1974).

Conservative sampling assumptions also help resolve an odd discrepancy between two
different types of theory. Most category learning models (e.g. Anderson, 1991; Kruschke,
1992; Love et al., 2004) do not tighten the generalization gradients as the experiment
progresses,7 and are capable of fitting empirical data on the basis of this implicit weak
sampling assumption. Our findings are more or less consistent with this: although a small

7It is true that these models do adjust the generalization gradients in order to accommodate learned
selective attention, the effect is generally to tighten generalization along one dimension at the expense of
other dimensions. What is not generally part of the model is an overall tightening along all dimensions, as
per strong sampling.
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Figure 15 . Posterior distributions over θ for each participant, for all three scenarios in
experiment 1. In these plots, we treated the model fit as “good” if the model correlated
above 0.8 with the raw data, “moderate” if the correlation was between 0.5 and 0.8, and
“poor” if the correlation fell below 0.5. All plots are on the same scale, with θ ranging from
0 to 1 on the horizontal axis and the probability density ranging from 0 to 12 on the vertical
axis.
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Figure 16 . Posterior distributions over θ for each participant, for all three data structures
in experiment 2. Starred cases correspond to participants who saw the cover story in the
strong sampling form. In these plots, we treated the model fit as “good” if the model
correlated above 0.8 with the raw data, “moderate” if the correlation was between 0.5 and
0.8, and “poor” if the correlation fell below 0.5. All plots are on the same scale, with θ
ranging from 0 to 1 on the horizontal axis and the probability density ranging from 0 to 12
on the vertical axis.
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Figure 17 . Distinguishability from the strong sampling case as sample size increases. Dis-
tinguishability is measured as the mean absolute difference in generalization probability
across the entire range of possible query items [0,1], where training data always span the
range [.3,.6]. The topmost curve plots the θ = 0 case, with the curves beneath increasing all
the way to θ = 1 in increments of 0.1. Except for the pure weak sampling case, all sampling
models eventually look indistinguishable from strong sampling as the sample size gets large.

number of people did display very strong tendencies to tighten their generalization gradients,
most did not. The typical change of 2-3% is small enough that it would probably not
be noticed in a great many categorization experiments. This seems particularly likely in
view of the fact that all of our problems were “positive evidence only” in design (in which
strong sampling is the true model), whereas the majority of category learning experiments
involve supervised classification designs (in which weak sampling is the true model). The
conservative θ = .2 value even in this case goes a long way toward explaining why strong
sampling is not the typical assumption made when modeling category learning.

In light of this result, the heavy reliance on strong sampling observed in other contexts
(e.g., Tenenbaum & Griffiths, 2001a; Xu & Tenenbaum, 2007b) might seem unjustified.
However, note that these models are typically concerned with learnability questions, often
over developmental timeframes. In such cases, the critical problem facing the model is to
ask how it is possible for the learner to acquire rich mental representations when exposed
only to positive examples (Muggleton, 1997), and in order to do so, some variation of
the strong sampling assumption is often implicitly adopted. For instance, in a language
learning context, the amount of data strictly required to acquire abstract knowledge about
syntax may be surprisingly small (Perfors et al., 2006; Perfors, Tenenbaum, & Regier,
under review): the data presented to the model by Perfors et al. (2006) corresponds only
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to a few hours of verbal input. In real life, of course, children require a great deal more
data, presumably because they have other things to learn besides syntax, their raw data
are messier than preprocessed corpus data, they have processing constraints that slow the
learning, and so on. These factors should act to weaken the sampling model, but, as long
as the resulting model is not strictly weak (i.e., as long as θ > 0), the learner should
eventually acquire the knowledge in question. In fact, as Figure 17 illustrates for the spatial
generalization problem we considered in this paper, as the sample size gets arbitrarily
large, every sampling model except weak sampling eventually becomes indistinguishable,
because they all converge on the true region. Thus, a learner who consistently employed
a θ = .0001 model would acquire knowledge in a fashion that is consistent with both the
“strong sampling” pattern used in some models of language acquisition, and the “weak
sampling” pattern often found in categorization experiments.

A number of other avenues for future work present themselves. Even within the
context of simple spatial generalization problems, the assumption that the underlying hy-
pothesis space consists solely of connected regions is probably too simple (Tenenbaum &
Griffiths, 2001b). In particular, people may be willing to entertain the notion that the
correct hypothesis consists of multiple regions (see Navarro, 2006, for a formalization of
this idea). To the extent that people believe that categories can cover multiple regions, the
effects on the generalization gradients are likely to be twofold. Firstly, consistent with the
general findings from our experiments, the generalization gradients over the extrapolation
region (i.e., beyond the training data) should tighten more slowly than would be expected
under the simpler model, because the learner remains open to the possibility that there
exists some additional region of the stimulus space for which the hypothesis is true, about
which they have yet to uncover any information. Secondly, the generalization gradients
will not remain flat inside the interpolation region, because the learner must entertain the
hypothesis that the training data that he or she has seen actually come from multiple re-
gions. In fact, Figure 8 shows evidence of this effect. Participant 14 (dark lines) decreases
the generalization probability in the gaps between training examples, whereas participant
2 (lighter lines) does not. More generally, if we examine the interpolation judgments across
experiment one generally there is a weak correlation (Spearman’s ρ = −.16, p ≈ 10−5)
between the generalization probability and the distance from the nearest training exemplar
to the query items. This is both consistent with standard exemplar models, as well as with
Bayesian generalization models that allow multiple regions. However, since the experimen-
tal designs used in this paper were not optimized for examining interpolative judgments
(i.e., there is a strong ceiling effect in these data since most people gave generalization
judgments very close to 1 for all interpolation questions) this remains an open question for
future work.

The use of uniform distributions as a basic building block is fairly standard for models
in which the learner’s goal is to identify a “consequential set” (e.g. Shepard, 1987; Tenen-
baum & Griffiths, 2001a; Sanjana & Tenenbaum, 2003; Navarro, 2006), and helps avoid the
circularity of explaining graded generalizations in terms of graded sampling distributions.
However, it is important to recognize that it too is an over-simplification. One of the more
interesting extensions that one might consider is the situation in which the learner has to
determine both the extension of the consequential set itself (i.e., which things are admissable
members of the category) as well as the distribution over those entities (i.e., which things are
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more typical members of the category). Along similar lines, we have considered only those
situations in which the learner observes positive and noise-free data from a single category.
Natural extensions to the work would look at how sampling assumptions operate in other
experimental designs, and in the presence of labeling noise. In the meantime, however, it
seems reasonable to conclude that individual participant’s inductive generalizations are in
close agreement with the predictions of the Bayesian theory, but vary considerably in terms
of the default assumptions about how data were generated.
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Appendix

1. Analytic Expressions for the Generalization Model

In this section, we derive exact expressions for the generalization probabilities referred
to in the main text. We start by deriving the basic form for all such probabilities, then
dealing with the weak sampling, strong sampling and mixed sampling cases in turn, under
the assumption of uniform priors. We then extend this to the non-uniform case.

Preliminaries. Let xi ∈ X denote the location of the ith observed item, and let
x = (x1, . . . , xn) denote the set of items known to belong to the same category. The learner
assumes that every element of x belongs to a single true region rt ∈ R. Since the tasks
that we consider explicitly provide upper and lower bounds, we may assume without loss
of generality that X = [0, 1] and R consists of all closed intervals on X . Given a novel
stimulus with co-ordinate value y are interested in P (y ∈ rt |x,x ∈ rt), the probability that
it is also in rt.

P (y ∈ rt |x,x ∈ rt) =
∫
R
P (y ∈ rt | rt = r)P (rt = r |x,x ∈ rt) dr (13)

where r denotes one possibility as to the identity of the true region rt, and the integration
is taken over R, the set of all such regions. Noting that P (y ∈ rt | rt = r) equals 1 if y falls
inside r and zero if it does not, we can expand the integral, and obtain:

P (y ∈ rt |x,x ∈ rt) =
∫
R
P (y ∈ rt | rt = r)P (rt = r |x,x ∈ rt) dr

=
∫
Ry

P (rt = r |x,x ∈ rt) dr

=
∫
Ry

P (x,x ∈ rt | rt = r)P (rt = r)
P (x,x ∈ rt)

dr

=
∫
Ry
P (x,x ∈ rt | rt = r)P (rt = r) dr∫

R P (x,x ∈ rt | rt = r)P (rt = r) dr (14)

where Ry ⊂ R denotes the set of possible regions that include y. We initially assume a
uniform prior over regions, P (rt = r) ∝ 1, and hence this expression simplifies to

P (y ∈ rt |x,x ∈ rt) =
∫
Ry
P (x,x ∈ rt | rt = r) dr∫

R P (x,x ∈ rt | rt = r) dr (15)

Letting zl = mini xi and zu = maxi xi, the requirement that x ∈ rt implies that P (x,x ∈
rt | rt = r) = 0 for any r that does not contain every element of x. Thus, under the uniform
prior the denominator in Eq. 15 is given by∫

R
P (x,x ∈ rt | rt = r) dr =

∫ zl

0

∫ 1

zu

P (x | rt = [l, u]) du dl (16)

Similarly, the numerator in Eq. 15 is given by∫
Ry

P (x,x ∈ rt | rt = r) dr =
∫ min(y,zl)

0

∫ 1

max(y,zu)
P (x | rt = [l, u]) du dl (17)
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Clearly, when zl ≤ y ≤ zu, the integrals in Eqs 16 and 17 are identical, and hence the
generalization probability is 1. However, for other cases (i.e., y < zl or zu < y) the integrals
must be explicitly evaluated. Since the integrals behave differently for strong and weak
sampling, we deal with them separately. We begin with the weak sampling case, since it is
the simpler of the two.

Weak sampling. For weak sampling, P (x | rt = [l, u]) = 1 across the range of
integration, so the denominator in Eq. 15 is simply∫

R
P (x,x ∈ rt | rt = r) dr =

∫ zl

0

∫ 1

zu

1 du dl = (1− zu)zl. (18)

where u denotes the upper bound on r and l is the lower bound. The numerator in those
cases where y < zl or zu < y becomes∫

Ry

P (x,x ∈ rt | rt = r) dr =
∫ y

0

∫ 1

zu

1 du dl = (1− zu)y if y < zl, (19)∫
Ry

P (x,x ∈ rt | rt = r) dr =
∫ zl

0

∫ 1

y
1 du dl = (1− y)zl if y > zu. (20)

Thus, when we substitute into Eq. 15, under weak sampling the Bayesian theory predicts
that the generalization gradients are linear:

P (y ∈ rt |x,x ∈ rt) =


y/zl if y < zl

1 if zl ≤ y ≤ zu
(1− y)/(1− zu) if zu < y

. (21)

Strong sampling. Under strong sampling, the story is slightly more complex. For
the moment, assume n 6= 1 and n 6= 2, since these cases need to be addressed separately.
Under strong sampling, each observation is generated independently from a uniform distri-
bution on rt, so∫
R
P (x,x ∈ rt | rt = r) dr =

∫ zl

0

∫ 1

zu

P (x | rt = [l, u]) du dl

=
∫ zl

0

∫ 1

zu

(u− l)−n du dl

=
∫ zl

0

[
(1− n)−1(u− l)1−n

]1
zu

dl

= (1− n)−1
∫ zl

0
(1− l)1−n − (zu − l)1−n dl

= (1− n)−1
[
−(2− n)−1(1− l)2−n + (2− n)−1(zu − l)2−n

]zl

0
= (1− n)−1(2− n)−1(1 + (zu − zl)2−n − (1− zl)2−n − zu2−n)

(22)

The integral over Ry has the same form, but with the outer integral taken from 0 to y
when y < zl, and the inner integral taken from y to 1 when y > zu. Thus, by substitution
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into Eq. 15, it is straightforward to note that when n > 2, the Bayesian theory with strong
sampling predicts that

P (y ∈ rt |x,x ∈ rt) =



1 + (zu − y)2−n − (1− y)2−n − zu2−n

1 + (zu − zl)2−n − (1− zl)2−n − zu2−n if y < zl

1 if zl ≤ y ≤ zu
1 + (y − zl)2−n − (1− zl)2−n − y2−n

1 + (zu − zl)2−n − (1− zl)2−n − zu2−n if zu < y

(23)

In the case where n = 1 we observe that,

∫
R
P (x1, x1 ∈ rt | rt = r) dr =

∫ zl

0

∫ 1

zu

P (x1 | rt = [l, u]) du dl

=
∫ zl

0

∫ 1

zu

(u− l)−1 du dl

=
∫ zl

0
[ln(u− l)]1zu

dl

=
∫ zl

0
ln(1− l)− ln(zu − l) dl

= [(l − 1) ln(1− l)− l]zl
0 − [(l − zu) ln(zu − l)− l]zl

0
= ((zl − 1) ln(1− zl)− zl)− ((zl − zu) ln(zu − zl)− zl + zu ln zu)
= (zu − zl) ln(zu − zl)− (1− zl) ln(1− zl)− zu ln zu (24)

Applying the same procedure as before yields the expression

P (y ∈ rt |x1, x1 ∈ rt) =



(zu − y) ln(zu − y)− (1− y) ln(1− y)− zu ln zu
(zu − zl) ln(zu − zl)− (1− zl) ln(1− zl)− zu ln zu

if y < zl

1 if zl ≤ y ≤ zu
(y − zl) ln(y − zl)− (1− zl) ln(1− zl)− y ln y

(zu − zl) ln(zu − zl)− (1− zl) ln(1− zl)− zu ln zu
if zu < y

(25)
In this case, however, the expression can be further simplified since zl = zu = x1:

P (y ∈ rt |x1, x1 ∈ rt) =



(1− y) ln(1− y) + x1 ln x1 − (x− y) ln(x1 − y)
(1− x1) ln(1− x1) + x1 ln x1

if y < x1

1 if y = x1
(1− x1) ln(1− x1) + y ln y − (y − x1) ln(y − x1)

(1− x1) ln(1− x1) + x1 ln x1
if x1 < y

(26)
(Obviously, this expression could be derived directly, rather than found as a special case
of the “zl, zu” formulation, but the more general version is useful for the mixed sampling



40

model, which is why we derive it this way). Turning to the case where n = 2,∫
R
P (x1, x2, x1 ∈ rt, x2 ∈ rt | rt = r) dr =

∫ zl

0

∫ 1

zu

P (x1, x2 | rt = [l, u]) du dl

=
∫ zl

0

∫ 1

zu

(u− l)−2 du dl

=
∫ zl

0

[
−(u− l)−1

]1
zu

dl

= −
∫ zl

0
(1− l)−1 − (zu − l)−1 dl

= [ln(1− l)]zl
0 − [ln(zu − l)]zl

0
= ln(1− zl) + ln zu − ln(zu − zl) (27)

Thus,

P (y ∈ rt |x1, x2, x1 ∈ rt, x2 ∈ rt) =



ln(1− y) + ln zu − ln(zu − y)
ln(1− zl) + ln zu − ln(zu − zl)

if y < zl

1 if zl ≤ y ≤ zu
ln(1− zl) + ln y − ln(y − zl)

ln(1− zl) + ln zu − ln(zu − zl)
if zu < y

(28)
Mixed sampling. The more general mixed sampling approach implies that with

probability θ, items are sampled from the consequential region, but with probability (1− θ)
they are generated independently of the region:

P (xi, xi ∈ rt | rt = r, θ) = (1− θ) + θ|r|−1. (29)

So we obtain the expression

P (x,x ∈ rt | rt = [u, l], θ) =
n∏
k=1

(1− θ) + θ(u− l)−1

=
(
(1− θ) + θ(u− l)−1

)n
=

n∑
k=0

(nk) (1− θ)kθn−k(u− l)n−k (30)

Having written the posterior probability in this form, it is simple to note that∫
R
P (x,x ∈ rt | r = rt, θ) dr =

n∑
k=0

(nk) (1− θ)kθn−k
∫ zl

0

∫ 1

zu

(u− l)n−k du dl (31)

and hence

P (y ∈ rt |x,x ∈ rt, θ) =
∑n
k=0 (nk) (1− θ)kθn−k

∫min(y,zl)
0

∫ 1
max(y,zu)(u− l)n−k du dl∑n

k=0
(
n
k

)
(1− θ)kθn−k

∫ zl
0
∫ 1
zu

(u− l)n−k du dl
(32)

where the integrals in this expression are of the same form as those solved in the previous
section.
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Non-uniform priors. Previously we assumed a uniform prior distribution, such
that P (rt = r) = P (u, l) ∝ 1. As noted in the main text, we generalize this to a simple family
of location-invariant priors, in which P (rt = r) ∝ P (u − l) (note that location-invariance
of the prior does not necessarily imply translation-invariant generalization gradients due to
the finite range restriction). For X = [0, 1] we adopt a one-parameter Beta(1, φ) family, in
which P (u − l) = φ(u − l)φ−1, for valid choices of u and l. This prior has the same form
as the likelihood, allowing φ to be interpreted as pseudo-data and allowing the integrals to
be solved simply. First, note that constant of proportionality φ vanishes since it appears in
every term in the numerator and denominator when we substitute Eq. 32 into Eq. 15, so
we may assume P (u− l) ∝ (u− l)φ−1. Accordingly, if we let

f(w, a, b) =
∫ a

0

∫ 1

b
(u− l)−w du dl (33)

denote the basic integrals in the model for w > 0, 0 ≤ a ≤ b ≤ 1, and let

b(n, k, θ) = (nk) (1− θ)kθn−k (34)

denote the binomial probability for k successes out of n trials with success rate parameter θ,
then we may write the “complete” model predictions for the two-parameter generalization
model as follows:

P (y ∈ rt |x,x ∈ rt, θ, φ) =
∑n
k=0 b(n, k, θ)f(n− k − φ+ 1,min(y, zl),max(y, zu))∑n

k=0 b(n, k, θ)f(n− k − φ+ 1, zl, zu) (35)

2. Additional modeling details

As noted in the main text, our data analysis also seeks to infer the precision of the
data τ , the proportion of observations that are contaminants ε, as well as an estimate of
the participants’ calibration, operationalized in terms of the range of the responses (from
a lower bound jl to an upper bound ju) that the participant was willing to give. In this
section, we discuss the technical details of the data analysis.

The first issue that needs to be considered is that of participant caligration. That
is, it is important to recognize that the generalization gradients discussed in the main
text correspond to a latent subjective probability. Regardless of the method used to elicit
judgments from participants, it is likely that people may not report this value in a straight-
forward fashion (e.g., typically people overestimate small probabilities and underestimate
large ones). To address this issue, we assume that the “calibration function” that relates
subjective probability to reported value is approximately linear, and is described in terms
of the upper bound ju (the expected judgment when the subjective probability is 1) and
the lower bound jl (when subjective probability is 0). That is, we link the Bayesian pre-
dictions P (y ∈ rt |x,x ∈ rt, θ, φ) about y to typical subjective judgments p̃(y) via a linear
calibration function:

p̃(y) = jl + (ju − jl)P (y ∈ rt |x,x ∈ rt, θ, φ) (36)

where the function is parameterized by ju and jl, the upper and lower bounds on values
that the participant is willing to report when making probability judgments. Although one
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could easily modify this to incorporate the the S-shaped nonlinearities that characterize
probability weighting functions (e.g., we did try the Prelec weight function), these distor-
tions appear to be too small to matter for these data, and so we restrict ourselves to the
linear case in the interests of parsimony.

Besides the issue of calibration, in order to convert the model from a single prediction
about human performance to a complete statistical model for the data, we need a formalism
for describing measurement error. While fitting models based on simple heuristics such as
ordinary least squares (OLS estimation) is very common in psychology, it is not robust
in the face of skewed error distributions (which are to be expected when judgements are
near 0 or 1) or contamination by outlier data (e.g., Huber, 1981). Explicit error theories,
complete with outlier detection, represent the correct solution to this issue. With this in
mind the Beta distribution is likely to provide a better account of the errors: we use a
Beta(1 + p̃τ, 1 + (1 − p̃)τ) in all applications in this paper. For our contaminant model,
we assume that on occasions people provide somewhat arbitrary responses, either due to
inattention, accidental responding, or any of a range of possibilities. In such cases we expect
there to be no relationship at all between the predicted and observed data. To handle these
contaminant cases we assume that with some probability ε, d is sampled from a uniform
distribution on [0,1]. Thus, error distribution becomes:

d | p̃, τ, ε ∼
{

Beta(1 + p̃τ, 1 + (1− p̃)τ) with probability 1− ε
Uniform with probability ε

(It should be noted that we did compare the behavior of this approach to standard Gaussian
models. The results were fairly similar, but the Gaussian model showed the expected
distortions caused by one or two outliers).

Having specified the model precisely, a Bayesian approach to data analysis requires
that we also set priors over the model parameters. To do so, we set a uniform prior over θ,
and for φ we set let P (φ) ∝ φ exp(−φ) to which means that the expected value of φ is 1. We
chose to set a prior over the calibration function that was biased towards assuming that the
participant was well calibrated, n which P (ju, jl) ∝ ju(1− jl), and we required that jl < ju.
The prior on the precision P (τ) ∝ (τ + 3)−3/2 is chosen so as to induce an approximately
uniform prior over the standard deviation of the errors. Finally, we use a very tight prior
P (ε) ∝ ε−3 (with the lower bound fixed at ε = 10−4) over the contaminant probability,
since our assumption is that genuine outliers are rare. When testing the model we varied
these assumptions to verify that the results are not highly sensitive to these priors.

All of the parameter estimates for θ and φ referred to in the main text were constructed
by finding the parameter values (θ, φ, jl, ju, τ, ε) that had maximum posterior probability.
Only those parameters of substantive interest are discussed in the manuscript, to avoid com-
plicating the discussion. However, it is important to recognize that although the model has
six parameters, it is not a particularly complex model in terms of its ability to fit data (see
I. J. Myung, 2000). Firstly, it is important to note that jl, ju and τ are parameters that are
in fact present (in slightly different forms) in nearly every model that is assessed in terms of
“correlation with the data”; it is just that these parameters are usually “hidden” from view.
To see this in a qualitative sense, suppose we had not introduced any of the four auxiliary
parameters at all, and simply reported correlations between the generalization functions
produced by the basic model (i.e., using θ and φ only). Had we done so, the calculation of
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the correlation coefficient itself would have relied on an implicit slope, intercept and error
variance term (i.e., correlation is the same thing as linear regression). These parameters
are part of the statistical model for the data, and are (almost) precisely equivalent to jl, ju
and τ . In essence, all we have done by describing these parameters is make the “standard”
assumptions of the correlation statistic explicit. Next, consider the role played by ε: all
it does is allow the model to “ignore” a very small proportion of the observations when
attempting to estimate the values of θ and φ. We did this for an important reason: we
did not want outliers to distort our parameter estimates, since parameter estimates are the
core of the paper. However, when we calculated the model fit using correlation coefficients,
the influence of ε was not included. The generalization model was still penalized for failing
to predict the outliers. As a consequence, the only thing that ε can do to the correlation
coefficient is make it weaker, because it means that the values of θ and φ are chosen to
optimize a slightly different loss function than the standard “least squares” estimator, but
the correlation is calculated in those standard terms. Finally, consider the role played by
θ and φ. In terms of the generalization functions that can be produced, notice that there
are some very severe constraints: they must be unimodal, may not become wider as more
observations arrive, and must remain flat across the region spanned by the observations.

3. Additional Methodological Details

The third part of the Appendix describes additional details relating to the experiments
reported in the main text. Firstly, here is the relevant text for the “bacterial”, “soil” and
“foraging” questions in experiment one:

Bacillus cereus is a type of bacteria that causes food-poisoning. This bacteria is sensitive to
temperature, and exposure to very high temperatures (>70◦C) or very low temperatures (<5◦C)
will quickly kill the bacteria. In an experiment, food was contaminated with Bacillus cereus and
then either heated or chilled to a given temperature. If the experiment found that the bacteria was
alive in food that was kept at the temperatures shown as black dots below, what is the probability
that it would also be found alive in food kept at the temperature specified by the red question
mark?

The colour of the flowers of Hydrangea macrophylla change depending upon soil pH levels. Soils
with a pH of less than 6 produce blue flowers, and soils with a pH greater than 8 produce pink
flowers. Neutral soils tend to produce very pale cream flowers. Given that cream flowers were
produced by Hydrangeas growing in soils with the pH levels shown as black dots below, what is the
probability that Hydrangeas would also produce cream flowers if they were grown in soil with the
pH level specified by the red question mark?

The southern bandicoot is a nocturnal marsupial. It is never seen outside of its burrow in daylight
hours. A recent field study examined the foraging habits of the bandicoot. If the field study found
that bandicoots were seen foraging at the times shown as black dots in the figure below, what is
the probability that they would also be foraging at the time specified by the red question mark?

For experiment two, the three cover stories related to the “bobo fruit”, the “walking
bird” and the “pikki-pikki leaves”. After presenting people with introductory text explaining
the experiment, text appeared on screen introducing one of the three scenarios. The text
for these conditions read as follows:

Your faithful guide Tahu has told you about a local delicacy: the Bobo-Fruit. He explains that they
range in color from dark green through yellow to dark brown, and that the dark green and dark
brown fruits do not taste very good.

The Maldive Walking-Bird is notoriously stupid - if you light a cooking fire it will walk up to
investigate, allowing you to simply hit it over the head. But what it lacks in intelligence it makes
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up for in flavour and as such is a staple in the local villagers diet. The Walking-Birds range in size
from very small to very large, and you have been told that the small birds are too bony and the
large birds are too fatty.

The leaves of the Pikki-pikki tree contain a mild stimulant that suppresses hunger and provides
the local natives with energy during long walks. They also have a pleasant minty taste and are
very refreshing to chew. The shape of Pikki-pikki leaves changes with the age of the tree - from
elongated through oval to round. You have been told that the elongated leaves of the young trees
and the round leaves of the old trees are not as refreshing as the oval leaves of the middle-aged
trees.

An example of a strong sampling instruction:
Tahu gives you some Bobo-Fruit to eat. They are delicious! You see many different colored Bobo-
Fruit hanging on the trees in front of you. Given the color of the delicious fruit that Tahu gave you
to eat (represented by the white circles on the scale below) how confident are you that the other
different colored fruit that you see (represented by red circles) will be equally as delicious?

An example of a weak sampling instruction:
You pick and eat some Bobo-Fruit. They are delicious! You see many different colored Bobo-Fruit
hanging on the trees in front of you. Given the color of the delicious fruit that you picked and ate
(represented by the white circles on the scale below) how confident are you that the other different
colored fruit that you see (represented by red circles) will be equally as delicious?


